

Solving Equations using Logarithms - Edexcel Past Exam Questions

- Find, giving your answer to 3 significant figures where appropriate, the value of x for which 1. (a) $3^x = 5$, (3) (b) $\log_2(2x+1) - \log_2 x = 2$. (4) Jan 05 Q3 2. Solve (a) $5^x = 8$, giving your answer to 3 significant figures, (3) (b) $\log_2(x+1) - \log_2 x = \log_2 7$ (3) **June 05 Q2** (i) Write down the value of $\log_6 36$. 3. (1) (ii) Express $2 \log_a 3 + \log_a 11$ as a single logarithm to base *a*. (3) **June 06 Q3** Solve the equation $5^x = 17$, giving your answer to 3 significant figures. 4. (3) Jan 07 Q4 (a) Find, to 3 significant figures, the value of x for which $8^x = 0.8$. 5. (2) (b) Solve the equation $2 \log_3 x - \log_3 7x = 1.$ (4) **June 07 Q6**
- 6. Given that *a* and *b* are positive constants, solve the simultaneous equations

a = 3b,

 $\log_3 a + \log_3 b = 2.$

	Give your answers as exact numbers.	(6) Jan 08 Q5
7.	(<i>a</i>) Find, to 3 significant figures, the value of <i>x</i> for which $5^x = 7$.	(2)
	(<i>b</i>) Solve the equation $5^{2x} - 12(5^x) + 35 = 0$.	(4)
		June 08 Q4

8. Given that 0 < x < 4 and

	Find the value of x .	$(4-x)-2\log_5 x = 1,$	(6) Jan 09 Q4
9.	(<i>a</i>) Find the value of <i>y</i> such that		
	(<i>b</i>) Find the values of x such that	$\log_2 y = -3.$	(2)
		$\frac{\log_2 32 + \log_2 16}{\log_2 x} = \log_2 x.$	(5)
		$\log_2 x$	June 09 Q8
10.	1. (a) Find the positive value of x such that		
		$\log_x 64 = 2.$	(2)
	(b) Solve for x $\log_2(11-6x)$	$= 2 \log_2 (x-1) + 3.$	(6) Jan 10 Q5
11.	(<i>a</i>) Given that 2 log ₃	$(x-5) - \log_3(2x - 13) = 1,$	
	Show that $x^2 - 16x + 64 = 0$.		(5)
	(b) Hence, or otherwise, solve $2 \log_3 d$	$(x-5) - \log_3(2x-13) = 1.$	(2) June 10 Q7
12.	12. (<i>a</i>) Sketch the graph of $y = 7^x$, $x \in \mathbb{R}$, showing the coordinates of any points at which the graph crosses the axes.		
	(<i>b</i>) Solve the equation	$7^{2x} - 4(7^x) + 3 = 0,$	
	giving your answers to 2 decimal	l places where appropriate.	(6) Jan 11 Q8
13.	3. Find, giving your answer to 3 significant figures where appropriate, the value of x for which		
	(<i>a</i>) $5^x = 10$,		(2)
	(b) $\log_3(x-2) = -1$.		(2) June 11 Q3