Solving Equations using Logarithms - Edexcel Past Exam Questions

1. Find, giving your answer to 3 significant figures where appropriate, the value of x for which
(a) $3^{x}=5$,
(b) $\log _{2}(2 x+1)-\log _{2} x=2$.
2. Solve
(a) $5^{x}=8$, giving your answer to 3 significant figures,
(b) $\log _{2}(x+1)-\log _{2} x=\log _{2} 7$

June 05 Q2
3. (i) Write down the value of $\log _{6} 36$.
(ii) Express $2 \log _{a} 3+\log _{a} 11$ as a single logarithm to base a.
4. Solve the equation $5^{x}=17$, giving your answer to 3 significant figures.
5. (a) Find, to 3 significant figures, the value of x for which $8^{x}=0.8$.
(b) Solve the equation

$$
\begin{equation*}
2 \log _{3} x-\log _{3} 7 x=1 \tag{4}
\end{equation*}
$$

6. Given that a and b are positive constants, solve the simultaneous equations

$$
\begin{gathered}
a=3 b, \\
\log _{3} a+\log _{3} b=2 .
\end{gathered}
$$

Give your answers as exact numbers.
7. (a) Find, to 3 significant figures, the value of x for which $5^{x}=7$.
(b) Solve the equation $5^{2 x}-12\left(5^{x}\right)+35=0$.
8. Given that $0<x<4$ and

$$
\log _{5}(4-x)-2 \log _{5} x=1,
$$

Find the value of x.
9. (a) Find the value of y such that

$$
\begin{equation*}
\log _{2} y=-3 \tag{2}
\end{equation*}
$$

(b) Find the values of x such that

$$
\begin{equation*}
\frac{\log _{2} 32+\log _{2} 16}{\log _{2} x}=\log _{2} x . \tag{5}
\end{equation*}
$$

10. (a) Find the positive value of x such that

$$
\begin{equation*}
\log _{x} 64=2 \tag{2}
\end{equation*}
$$

(b) Solve for x

$$
\begin{equation*}
\log _{2}(11-6 x)=2 \log _{2}(x-1)+3 . \tag{6}
\end{equation*}
$$

Jan 10 Q5
11. (a) Given that

$$
\begin{equation*}
2 \log _{3}(x-5)-\log _{3}(2 x-13)=1 \tag{5}
\end{equation*}
$$

Show that $x^{2}-16 x+64=0$.
(b) Hence, or otherwise, solve $2 \log _{3}(x-5)-\log _{3}(2 x-13)=1$.

June 10 Q7
12. (a) Sketch the graph of $y=7^{x}, x \in \mathbb{R}$, showing the coordinates of any points at which the graph crosses the axes.
(b) Solve the equation

$$
7^{2 x}-4\left(7^{x}\right)+3=0
$$

giving your answers to 2 decimal places where appropriate.
13. Find, giving your answer to 3 significant figures where appropriate, the value of x for which
(a) $5^{x}=10$,
(b) $\log _{3}(x-2)=-1$.

