Quadratic Functions - Edexcel Past Exam Questions

1. Given that the equation $k x^{2}+12 x+k=0$, where k is a positive constant, has equal roots, find the value of k.

Jan 05 Q3
2. $x^{2}-8 x-29 \equiv(x+a)^{2}+b$,
where a and b are constants.
(a) Find the value of a and the value of b.
(b) Hence, or otherwise, show that the roots of

$$
x^{2}-8 x-29=0
$$

are $c \pm d \sqrt{ } 5$, where c and d are integers to be found.
June 05 Q3
3. $x^{2}+2 x+3 \equiv(x+a)^{2}+b$.
(a) Find the values of the constants a and b.
(b) Sketch the graph of $y=x^{2}+2 x+3$, indicating clearly the coordinates of any intersections with the coordinate axes.
(c) Find the value of the discriminant of $x^{2}+2 x+3$. Explain how the sign of the discriminant relates to your sketch in part (b).

The equation $x^{2}+k x+3=0$, where k is a constant, has no real roots.
(d) Find the set of possible values of k, giving your answer in surd form.

Jan 06 Q10
4. The equation $x^{2}+2 p x+(3 p+4)=0$, where p is a positive constant, has equal roots.
(a) Find the value of p.
(b) For this value of p, solve the equation $x^{2}+2 p x+(3 p+4)=0$.
5. The equation $2 x^{2}-3 x-(k+1)=0$, where k is a constant, has no real roots.

Find the set of possible values of k.
Jan 07 Q5
6. The equation $x^{2}+k x+(k+3)=0$, where k is a constant, has different real roots.
(a) Show that $k^{2}-4 k-12>0$.
(b) Find the set of possible values of k.
7. The equation

$$
x^{2}+k x+8=k
$$

has no real solutions for x.
(a) Show that k satisfies $k^{2}+4 k-32<0$.
(b) Hence find the set of possible values of k.
8. Given that the equation $2 q x^{2}+q x-1=0$, where q is a constant, has no real roots,
(a) show that $q^{2}+8 q<0$.
(b) Hence find the set of possible values of q.

June 08 Q8
9. The equation $k x^{2}+4 x+(5-k)=0$, where k is a constant, has 2 different real solutions for x.
(a) Show that k satisfies

$$
\begin{equation*}
k^{2}-5 k+4>0 \tag{3}
\end{equation*}
$$

(b) Hence find the set of possible values of k.
10. The equation $x^{2}+3 p x+p=0$, where p is a non-zero constant, has equal roots.

Find the value of p.
11. $\mathrm{f}(x)=x^{2}+4 k x+(3+11 k)$, where k is a constant.
(a) Express $\mathrm{f}(x)$ in the form $(x+p)^{2}+q$, where p and q are constants to be found in terms of k.

Given that the equation $\mathrm{f}(x)=0$ has no real roots,
(b) find the set of possible values of k.

Given that $k=1$,
(c) sketch the graph of $y=\mathrm{f}(x)$, showing the coordinates of any point at which the graph crosses a coordinate axis.
12. (a) Show that $x^{2}+6 x+11$ can be written as

$$
(x+p)^{2}+q,
$$

where p and q are integers to be found.
(b) Sketch the curve with equation $y=x^{2}+6 x+11$, showing clearly any intersections with the coordinate axes.
(c) Find the value of the discriminant of $x^{2}+6 x+11$.
13. The equation $x^{2}+(k-3) x+(3-2 k)=0$, where k is a constant, has two distinct real roots.
(a) Show that k satisfies

$$
\begin{equation*}
k^{2}+2 k-3>0 . \tag{3}
\end{equation*}
$$

(b) Find the set of possible values of k.
14.

$$
\mathrm{f}(x)=x^{2}+(k+3) x+k,
$$

where k is a real constant.
(a) Find the discriminant of $\mathrm{f}(x)$ in terms of k.
(b) Show that the discriminant of $\mathrm{f}(x)$ can be expressed in the form $(k+a)^{2}+b$, where a and b are integers to be found.
(c) Show that, for all values of k, the equation $\mathrm{f}(x)=0$ has real roots.

