

Quadratic Functions - Edexcel Past Exam Questions

- 1. Given that the equation $kx^2 + 12x + k = 0$, where k is a positive constant, has equal roots, find the value of k. (4)
 - Jan 05 Q3

(3)

(3)

(2)

$$x^2 - 8x - 29 \equiv (x+a)^2 + b,$$

where *a* and *b* are constants.

- (a) Find the value of a and the value of b.
- (b) Hence, or otherwise, show that the roots of

$$x^2 - 8x - 29 = 0$$

are $c \pm d\sqrt{5}$, where c and d are integers to be found.

June 05 Q3

3. $x^2 + 2x + 3 \equiv (x + a)^2 + b$.

- (*a*) Find the values of the constants *a* and *b*.
- (b) Sketch the graph of $y = x^2 + 2x + 3$, indicating clearly the coordinates of any intersections with the coordinate axes. (3)
- (c) Find the value of the discriminant of $x^2 + 2x + 3$. Explain how the sign of the discriminant relates to your sketch in part (b). (2)

The equation $x^2 + kx + 3 = 0$, where *k* is a constant, has no real roots.

(d) Find the set of possible values of k, giving your answer in surd form. (4)

Jan 06 Q10

4. The equation $x^2 + 2px + (3p + 4) = 0$, where p is a positive constant, has equal roots.

(<i>a</i>)	Find the value of <i>p</i> .	(4)
(<i>b</i>)	For this value of <i>p</i> , solve the equation $x^2 + 2px + (3p + 4) = 0$.	(2) June 06 Q8

5.	The equation $2x^2 - 3x - (k + 1) = 0$, where k is a constant, has no real roots.		
	Find the set of possible values of <i>k</i> .	(4)	
		Jan 07 Q5	
6.	The equation $x^2 + kx + (k + 3) = 0$, where k is a constant, has different real roots		
	(a) Show that $k^2 - 4k - 12 > 0$.		
		(2)	
	(b) Find the set of possible values of k.	(4) June 07 Q7	
7.	The equation		
	$x^2 + kx + 8 = k$		
	has no real solutions for <i>x</i> .		
	(a) Show that k satisfies $k^2 + 4k - 32 < 0$.	(3)	
	(b) Hence find the set of possible values of k .	(4)	
		Jan 08 Q8	
8.	Given that the equation $2qx^2 + qx - 1 = 0$, where q is a constant, has no real roots,		
	(<i>a</i>) show that $q^2 + 8q < 0$.		
		(2)	
	(b) Hence find the set of possible values of q .	(3)	
		June 08 Q8	

9. The equation $kx^2 + 4x + (5 - k) = 0$, where k is a constant, has 2 different real solutions for x.

(*a*) Show that *k* satisfies

$$k^2 - 5k + 4 > 0.$$

(b) Hence find the set of possible values of k. (4)

Jan 09 Q7

(3)

(4)

(2)

10. The equation $x^2 + 3px + p = 0$, where *p* is a non-zero constant, has equal roots.

	Find the value of <i>p</i> .	(4)
		June 09 Q6
11.	$f(x) = x^2 + 4kx + (3 + 11k)$, where <i>k</i> is a constant.	

(a) Express f(x) in the form (x + p)² + q, where p and q are constants to be found in terms of k.
(3)

Given that the equation f(x) = 0 has no real roots,

(*b*) find the set of possible values of *k*.

Given that k = 1,

- (c) sketch the graph of y = f(x), showing the coordinates of any point at which the graph crosses a coordinate axis.
 (3) Jan 10 Q10
- 12. (a) Show that $x^2 + 6x + 11$ can be written as

 $(x+p)^2+q,$

where *p* and *q* are integers to be found.

- (b) Sketch the curve with equation $y = x^2 + 6x + 11$, showing clearly any intersections with the coordinate axes.
- (c) Find the value of the discriminant of $x^2 + 6x + 11$. (2) June 10 Q4
- 13. The equation $x^2 + (k-3)x + (3-2k) = 0$, where k is a constant, has two distinct real roots.
 - (*a*) Show that *k* satisfies

$$k^2 + 2k - 3 > 0.$$

(b) Find the set of possible values of k. (4)

Jan 11 Q8

(3)

www.naikermaths.com

14.
$$f(x) = x^2 + (k+3)x + k$$
,

where *k* is a real constant.

	June 11	Q7
(<i>c</i>)	Show that, for all values of <i>k</i> , the equation $f(x) = 0$ has real roots.	(2)
(<i>b</i>)	Show that the discriminant of $f(x)$ can be expressed in the form $(k + a)^2 + b$, where <i>a b</i> are integers to be found.	and (2)
(<i>a</i>)	Find the discriminant of $f(x)$ in terms of k .	(2)