Binomial Expansion - Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 05 Q1

Question Number	Scheme	Marks
-	$(3+2x)^5 = (3^5) + {5 \choose 1} 3^4 \cdot (2x) + {5 \choose 2} 3^3 (2x)^2 + \cdots$	M1
	$= \underbrace{243,+810x,+1080x^2}_{}$	B1, A1, A1 (4)
	M1: Use of binomial leading to correct expression for $x \text{ or } x^2 \text{ term. } \binom{n}{r} \text{ is ok}$	
	can be implied.	

Question 2: June 05 Q4

Question number	Scheme	Marks	
-	(a) $1+12px$, $+\frac{12\times11}{2}(px)^2$	B1, B1	(2)
	(b) $12p(x) = -q(x)$ $66p^2(x^2) = 11q(x^2)$ (Equate terms, or coefficients) $\Rightarrow 66p^2 = -132p$ (Eqn. in p or q only)	M1	
	$\Rightarrow 66p^2 = -132p $ (Eqn. in p or q only)	M1	
	p=-2, $q=24$	A1, A1	(4)
			6
	(a) Terms can be listed rather than added. First B1: Simplified form must be seen, but may be in (b).		
	(b) First M: May still have $\binom{12}{2}$ or $^{12}C_2$		
	Second M: Not with $\binom{12}{2}$ or $^{12}C_2$. Dependent upon having p 's in each term.		
	Zero solutions must be rejected for the final A mark.		

Question 3: Jan 06 Q2

Question number	Scheme	Marks	
	(a) $(1+px)^9 = 1+9px$; $+\binom{9}{2}(px)^2$ (b) $9p = 36$, so $p = 4$	B1 B1	(2)
	(b) $9p = 36$, so $p = 4$	M1 A1	
	$q = \frac{9 \times 8}{2} p^2$ or $36p^2$ or $36p$ if that follows from their (a)	M1	
	So $q = 576$	A1cao	(4)
	(a) 2^{nd} B1 for $\binom{9}{2}(px)^2$ or better. Condone "," not "+". (b) 1^{st} M1 for a linear equation for p . 2^{nd} M1 for either printed expression, follow through their p .		0
N.B.	$1+9 px + 36 px^2$ leading to $p = 4$, $q = 144$ scores B1B0 M1A1M1A0 i.e 4/6		

Question 4: June 06 Q1

Question number	Scheme	Marks	
-	$(2+x)^6 = 64$	B1	
	$+(6\times2^{5}\times x)+(\frac{6\times5}{2}\times2^{4}\times x^{2}),$ $+192x, +240x^{2}$	M1, A1, A1	(4)
			4
	The terms can be 'listed' rather than added. M1: Requires correct structure: 'binomial coefficients' (perhaps from Pascal's		
	triangle), increasing powers of one term, decreasing powers of the other term (this may be 1 if factor 2 has been taken out). Allow 'slips'. $ \begin{pmatrix} 6 \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} 6 \\ 2 \end{pmatrix} \text{ or equivalent are acceptable, or even} \left(\frac{6}{1} \right) \text{ and } \left(\frac{6}{2} \right). $		
	Decreasing powers of x: Can score only the M mark.		
	64(1+), even if all terms in the bracket are correct, scores max. B1M1A0A0.		

Question 5: Jan 07 Q2

Question Number	Scheme	Marks
(a)	$(1-2x)^5 = 1 + 5 \times (-2x) + \frac{5 \times 4}{2!} (-2x)^2 + \frac{5 \times 4 \times 3}{3!} (-2x)^3 + \dots$	
	$=1-10x+40x^2-80x^3+$	B1, M1, A1, A1
(b)	$(1+r)(1-2r)^5 = (1+r)(1-10r+1)$	(4)
(0)	$(1+x)(1-2x)^5 = (1+x)(1-10x+)$ = 1+x-10x+	M1
	$\approx 1 - 9x$ (**)	A1 (2) (6)

<u>Notes</u>	
2(a)	
1-10x	B1
1-10x must be seen in this simplified form in (a).	
Correct structure: 'binomial coefficients' (perhaps from Pascal's triangle), increasing powers of x.	. M1
Allow slips.	
Accept other forms: ${}^{5}C_{1}$, $\binom{5}{1}$, also condone $\left(\frac{5}{1}\right)$ but must be attempting to use 5.	
Condone use of invisible brackets and using $2x$ instead of $-2x$.	
Powers of x: at least 2 powers of the type $(2x)^a$ or $2x^a$ seen for $a \ge 1$.	
$40x^2$ (1st A1)	A1
$-80x^{3}$ (2nd A1)	A1
Allow commas between terms. Terms may be listed rather than added	
Allow 'recovery' from invisible brackets, so $1^5 + {5 \choose 1} 1^4 - 2x + {5 \choose 2} 1^3 - 2x^2 + {5 \choose 3} 1^2 - 2x^3$ = $1 - 10x + 40x^2 - 80x^3 + \dots$ gains full marks.	
$1+5\times(2x)+\frac{5\times4}{2!}(2x)^2+\frac{5\times4\times3}{3!}(2x)^3+=1+10x+40x^2+80x^3+$ gains B0M1A1A0 Misread: first 4 terms, descending terms: if correct, would score	
B0, M1, 1st A1: one of $40x^2$ and $-80x^3$ correct; 2nd A1: both $40x^2$ and $-80x^3$ correct.	
2(a) Long multiplication	
$\frac{(1-2x)^2 = 1 - 4x + 4x^2}{(1-2x)^5 = 1 - 10x + 40x^2 + 80x^3 + \dots} = \frac{(1-2x)^3 = 1 - 6x + 12x^2 - 8x^3}{(1-2x)^4 = 1 - 8x + 24x^2 - 32x^3} + \frac{16x^4}{(1-2x)^5} = \frac{1 - 10x + 40x^2 + 80x^3 + \dots}{(1-2x)^5 = 1 - 10x + 40x^2 + 80x^3 + \dots}$	}
1-10x	B1
1 - 10x must be seen in this simplified form in (a).	
Attempt repeated multiplication up to and including $(1-2x)^5$	M1
$ 40x^2 $ (1st A1)	A1
$-80x^{3}$ (2nd A1)	A1
()	

Misread: first 4 terms, descending terms: if correct, would score B0, M1, 1st A1: one of $40x^2$ and $-80x^3$ correct; 2nd A1: both $40x^2$ and $-80x^3$ correct.

Question 6: June 07 Q3

Question number	Scheme	Marks	
	(a) $1+6kx$ [Allow unsimplified versions, e.g. $1^6+6(1^5)kx$, ${}^6C_0+{}^6C_1kx$] $+\frac{6\times5}{2}(kx)^2+\frac{6\times5\times4}{3\times2}(kx)^3$ [See below for acceptable versions] N.B. THIS NEED NOT BE SIMPLIFIED FOR THE A1 (isw is applied)	B1 M1 A1	(3)
	(b) $6k = 15k^2$ $k = \frac{2}{5}$ (or equiv. fraction, or 0.4) (Ignore $k = 0$, if seen)	M1 A1cso	(2)
	(c) $c = \frac{6 \times 5 \times 4}{3 \times 2} \left(\frac{2}{5}\right)^3 = \frac{32}{25}$ (or equiv. fraction, or 1.28)	A1cso	(1)
	(Ignore x^3 , so $\frac{32}{25}x^3$ is fine)		6
	(a) The terms can be 'listed' rather than added. M1: Requires correct structure: 'binomial coefficients' (perhaps from Pascal's triangle), increasing powers of x. Allow a 'slip' or 'slips' such as: $ + \frac{6 \times 5}{2} kx^2 + \frac{6 \times 5 \times 4}{3 \times 2} kx^3, + \frac{6 \times 5}{2} (kx)^2 + \frac{6 \times 5}{3 \times 2} (kx)^3 \\ + \frac{5 \times 4}{2} kx^2 + \frac{5 \times 4 \times 3}{3 \times 2} kx^3, + \frac{6 \times 5}{2} x^2 + \frac{6 \times 5 \times 4}{3 \times 2} x^3 \\ \underline{But}: 15 + k^2 x^2 + 20 + k^3 x^3 \text{ or similar is M0.} $ Both x^2 and x^3 terms must be seen. $ \begin{pmatrix} 6 \\ 2 \end{pmatrix} \text{ and } \begin{pmatrix} 6 \\ 3 \end{pmatrix} \text{ or equivalent such as } {}^6C_2 \text{ and } {}^6C_3 \text{ are acceptable, and} $ $ \text{even } \left(\frac{6}{2} \right) \text{ and } \left(\frac{6}{3} \right) \text{ are acceptable for the method mark.} $ A1: Any correct (possibly unsimplified) version of these 2 terms.		

Question 7: Jan 08 Q3

Question Number	Scheme	Marks
(a)	$\left(1 + \frac{1}{2}x\right)^{10} = 1 + \frac{\binom{10}{1}}{\binom{1}{2}}\left(\frac{1}{2}x\right) + \binom{10}{2}\left(\frac{1}{2}x\right)^2 + \binom{10}{3}\left(\frac{1}{2}x\right)^3$	M1 A1
	= 1 + 5x; + $\frac{45}{4}$ (or 11.25) x^2 + 15 x^3 (coeffs need to be these, i.e, simplified)	A1; A1 (4)
	[Allow A1A0, if totally correct with unsimplified, single fraction coefficients)	
(b)	$(1 + \frac{1}{2} \times 0.01)^{10} = 1 + 5(0.01) + (\frac{45}{4} \text{ or} 11.25)(0.01)^2 + 15(0.01)^3$	M1 A1√
	= 1 + 0.05 + 0.001125 + 0.000015 = 1.05114 cao	A1 (3) [7]
Notes:	(a) For M1 first A1: Consider underlined expression only. M1 Requires correct structure for at least two of the three terms: (i) Must be attempt at binomial coefficients.	
	[Be generous :allow all notations e.g. ${}^{10}C_2$, even $\left(\frac{10}{2}\right)$; allow "slips".]	
	(ii) Must have increasing powers of x , (iii) May be listed, need not be added; this applies for all marks.	
	First A1: Requires all three correct terms but need not be simplified, allow 1^{10} etc, ${}^{10}C_2$ etc, and condone omission of brackets around powers of ${}^{12}x$ Second A1: Consider as B1: 1 + 5 x can score A1 on Epen, even after M0	
	(b) For M1: Substituting their (0.01) into their (a) result [0.1, 0.001, 0.25, 0.025,0.0025 acceptable but not 0.005 or 1.005] First A1 (f.t.): Substitution of (0.01) into their 4 termed expression in (a) Answer with no working scores no marks (calculator gives this answer)	

Question 8: June 08 Q3

Question Number	Scheme	Marks
(a)	$(1+ax)^{10} = 1 + 10ax$	B1
	$+\frac{10\times9}{2}(ax)^2+\frac{10\times9\times8}{6}(ax)^3$	M1
	$+45(ax)^2$, $+120(ax)^3$ or $+45a^2x^2$, $+120a^3x^3$	A1 A1 (4)
(b)	$120a^3 = 2 \times 45a^2$ $a = \frac{3}{4}$ or equiv. $\left(\text{e.g.} \frac{90}{120}, 0.75\right)$	M1 A1 (2)
		(6 marks)

Question 9: Jan 09 Q1

Question Number	Scheme	Marks	1	
	$(3-2x)^5 = 243$, $+5 \times (3)^4 (-2x) = -810x$	B1, B1		
	$(3-2x)^5 = 243$, $+5 \times (3)^4 (-2x) = -810x$ $+\frac{5 \times 4}{2} (3)^3 (-2x)^2 = +1080x^2$	M1 A1	(4)	
			[4]	
Notes	First term must be 243 for B1, writing just 3 ⁵ is B0 (Mark their final answer second line of special cases below). Term must be simplified to -810x for B1	rs except in		
	The x is required for this mark.			
	The $method$ mark $(M1)$ is $generous$ and is awarded for an attempt at Binor third term.	nial to get th	ıe	
	There must be an x^2 (or no x- i.e. not wrong power) and attempt at Binomia and at dealing with powers of 3 and 2. The power of 3 should not be one, by 2 may be one (regarded as bracketing slip).			
	So allow $\binom{5}{2}$ or $\binom{5}{3}$ or 5C_2 or 5C_3 or even $\left(\frac{5}{2}\right)$ or $\left(\frac{5}{3}\right)$ or use of '10' (m	"10" (maybe from		
	Pascal's triangle)			
	May see ${}^{5}C_{2}(3)^{3}(-2x)^{2}$ or ${}^{5}C_{2}(3)^{3}(-2x^{2})$ or ${}^{5}C_{2}(3)^{5}(-\frac{2}{3}x^{2})$ or $10(3)^{3}(2x)^{2}$	vhich would		
	each score the M1 Alis c.a.o and needs $1080x^2$ (if $1080x^2$ is written with no working this is a	warded both	,	
	marks i.e. M1 A1.)	warded oon		
Special	$243+810x+1080x^2$ is BlB0M1A1 (condone no negative signs)			
cases	Follows correct answer with $27-90x+120x^2$ can isw here (sp case)—full a correct answer	marks for		
	Misreads ascending and gives $-32x^5 + 240x^4 - 720x^3$ is marked as B1B0M case and must be completely correct. (If any slips could get B0B0M1A0)	1A0 special	Ĺ	
	Ignores 3 and expands $(1\pm 2x)^5$ is $0/4$			
	243, -810x, $1080x^2$ is full marks but 243, -810, 1080 is B1,B0,M1,A0			
	NB Alternative method $3^5 (1 - \frac{2}{3}x)^5 = 3^5 - 5 \times 3^5 \times (\frac{2}{3}x) + {5 \choose 3} 3^5 (-\frac{2}{3}x)^2 + \dots$ is	B0B0M1A	0	
	- answers must be simplified to $243 - 810x + 1080x^2$ for full marks (awarded)			
	Special case $3(1-\frac{2}{3}x)^5 = 3-5\times 3\times \left(\frac{2}{3}x\right) + {5 \choose 3} 3\left(-\frac{2}{3}x\right)^2 +$ is B0 , B0 , M1 , A	.0		
	Or $3(1-2x)^5$ is B0B0M0A0			

Question 10: June 09 Q2

Question Number	Scheme	Marks
(a)	$(7 \times \times x)$ or $(21 \times \times x^2)$ The 7 or 21 can be in 'unsimplified' form.	M1
	$(7 \times \times x)$ or $(21 \times \times x^2)$ The 7 or 21 can be in 'unsimplified' form. $(2+kx)^7 = 2^7 + 2^6 \times 7 \times kx + 2^5 \times {7 \choose 2} k^2 x^2$	
	= 128; $+448kx$, $+672k^2x^2$ [or $672(kx)^2$]	B1; A1, A1
	(If $672kx^2$ follows $672(kx)^2$, isw and allow A1)	(4)
(b)	$6 \times 448k = 672k^2$	M1
	k = 4 (Ignore $k = 0$, if seen)	A1 (2)
(a)	The terms can be 'listed' rather than added. Ignore any extra terms.	I.
	M1 for either the x term or the x^2 term. Requires correct binomial coefficient in any factor with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or k) may be wrong or missing. Allow binomial coefficients such as $\binom{7}{1}$, $\binom{7}{1}$, $\binom{7}{2}$, $\binom{7}{2}$, $\binom{7}{2}$. However, $448 + kx$ or similar is M0.	
	B1, A1, A1 for the simplified versions seen above.	
	Alternative: Note that a factor 2^7 can be taken out first: $2^7 \left(1 + \frac{kx}{2}\right)^7$, but the mark scheme still apple	ies.
	Ignoring subsequent working (isw): Isw if necessary after correct working: e.g. $128 + 448kx + 672k^2x^2$ M1 B1 A1 A1 $= 4 + 14kx + 21k^2x^2$ isw (Full marks are still available in part (b)).	
(b)	M1 for equating their coefficient of x^2 to 6 times that of x to get an equation in k , or equating their coefficient of x to 6 times that of x^2 , to get an equation in k . Allow this M mark even if the equation is trivial, providing their coefficients from pa have been used, e.g. $6 \times 448k = 672k$, but beware $k = 4$ following from this, which is An equation in k alone is required for this M mark, so e.g. $6 \times 448kx = 672k^2x^2 \implies k = 4$ or similar is M0 A0 (equation in coefficients only never seen), but	s A0.
	e.g. $6 \times 448kx = 672k^2x^2 \implies 6 \times 448k = 672k^2 \implies k = 4$ will get M1 A1	
	(as coefficients rather than terms have now been considered)	
	The mistake $2\left(1+\frac{kx}{2}\right)^7$ would give a maximum of 3 marks: M1B0A0A0, M1A1	

Question 11: Jan 10 Q1

Question Number	Scheme	Marks
	$\left[(3-x)^6 = \right] 3^6 + 3^5 \times 6 \times (-x) + 3^4 \times \binom{6}{2} \times (-x)^2$	M1
	$= 729, -1458x, +1215x^2$	B1,A1, A1 [4]
Notes	M1 for either the x term or the x^2 term. Requires correct binomial coefficient in any form with the correct power of x – condone lack of negative sign and wrong power of 3. This mark may be given if no working is shown, but one of the terms including x is correct. Allow $\frac{6}{1}$, or $\frac{6}{2}$ (must have a power of 3, even if only power 1)	
	First term must be 729 for B1 , (writing just 3^6 is B0) can isw if numbers added to this constant later. Can allow 729(1 Term must be simplified to $-1458x$ for A1cao . The x is required for this mark.	
	Final A1 is c.a.o and needs to be $+1215x^2$ (can follow omission of negative sign in working)	
	Descending powers of x would be $x^6 + 3 \times 6 \times (-x)^5 + 3^2 \times \binom{6}{4} \times (-x)^4 + \dots$	
	i.e. $x^6 - 18x^5 + 135x^4 +$ This is M1B1A0A0 if completely "correct" or M1 B0A0A0 for <u>correct</u> binomial coefficient in any form with the correct power of x as before	
Alternative		
	NB Alternative method: $(3-x)^6 = 3^6(1+6\times(-\frac{x}{3})+\binom{6}{2}\times(-\frac{x}{3})^2+)$ is M1B0A0A0	
	– answers must be simplified to 729, $-1458x$, $+1215x^2$ for full marks (awarded as before)	
	The mistake $(3-x)^6 = 3(1-\frac{x}{3})^6 = 3(1+6\times(-\frac{x}{3})+\times\binom{6}{2}\times(-\frac{x}{3})^2 +)$ may also be	
	awarded M1B0A0A0 Another mistake $3^{6}(1-6x+15x^{2}) = 729$ would be M1B1A0A0	

Question 12: June 10 Q4

Question Number	Scheme	
-	(a) $(1+ax)^7 = 1+7ax$ or $1+7(ax)$ (Not unsimplified versions)	B1
	$+\frac{7\times6}{2}(ax)^2 + \frac{7\times6\times5}{6}(ax)^3$ Evidence from <u>one</u> of these terms is enough	M1
	$+21a^2x^2$ or $+21(ax)^2$ or $+21(a^2x^2)$	A1
	$+35a^3x^3$ or $+35(ax)^3$ or $+35(a^3x^3)$	A1 (4
	(b) $21a^2 = 525$	M1
	$a = \pm 5$ (Both values are required) (The answer $a = 5$ with no working scores M1 A0)	A1 (2
	(a) The terms can be 'listed' rather than added.	
	M1: Requires correct structure: a correct binomial coefficient in any form (perhaps from Pascal's triangle) with the correct power of x . Allow missing a 's and wrong powers of a , e.g. $\frac{7 \times 6}{2} a x^2, \qquad \frac{7 \times 6 \times 5}{3 \times 2} x^3$ However, $21 + a^2 x^2 + 35 + a^3 x^3$ or similar is M0. $1 + 7ax + 21 + a^2 x^2 + 35 + a^3 x^3 = 57 + \dots$ scores the B1 (isw). $\binom{7}{2}$ and $\binom{7}{3}$ or equivalent such as $\binom{7}{2}$ and $\binom{7}{3}$ are acceptable,	
	but $\underline{\text{not}}\left(\frac{7}{2}\right)$ or $\left(\frac{7}{3}\right)$ (unless subsequently corrected).	
	1^{st} A1: Correct x^2 term. 2^{nd} A1: Correct x^3 term (The binomial coefficients <u>must</u> be simplified).	
	Special case: If $(ax)^2$ and $(ax)^3$ are seen within the working, but then lost	
	A1 A0 can be given if $21ax^2$ and $35ax^3$ are <u>both</u> achieved.	
	<u>a's omitted throughout</u> : Note that only the M mark is available in this case.	
	(b) M: Equating their coefficient of x^2 to 525.	
	An equation in a or a^2 alone is required for this M mark, but allow 'recovery' that shows the required coefficient, e.g. $21a^2x^2 = 525 \implies 21a^2 = 525$ is acceptable,	
	but $21a^2x^2 = 525 \implies a^2 = 25$ is not acceptable.	
	After $21ax^2$ in the answer for (a), allow 'recovery' of a^2 in (b) so that full marks are available for (b) (but not retrospectively for (a)).	

Question 13: Jan 11 Q5

Question	Cabana	Manda			
Number	Scheme	Marks			
(a)	$\binom{40}{4} = \frac{40!}{4!b!}$; $(1+x)^n$ coefficients of x^4 and x^5 are p and q respectively. b=36 Candidates should usually "identify" two terms as their p and q respectively.	B1 (1)			
(b)	Term 1: $\binom{40}{4}$ or $\binom{40}{4!36!}$ or $\frac{40!}{4!36!}$ or $\frac{40(39)(38)(37)}{4!}$ or 91390 Term 2 correct. (Ignore the label of p and/or q .)	M1			
	2: $\binom{5}{5}$ or $\binom{5}{5!35!}$ or $\frac{10!5}{5!35!}$ or $\frac{10!5}{5!}$ or 658008 correct. (Ignore the label of p and/or q .)	A1			
	Hence, $\frac{q}{p} = \frac{658008}{91390} \left\{ = \frac{36}{5} = 7.2 \right\}$ for $\frac{658008}{91390}$ oe	(3) [4]			
(5)	Notes Notes				
(a)	B1: for only $b = 36$.				
(b)	The candidate may expand out their binomial series. At this stage no marks should be awarded until they start to identify either one or both of the terms that they want to focus on. Once they identify their terms then if one out of two of them (ignoring which one is p and which one is q) is correct then award M1. If both of the terms are identified correctly (ignoring which one is p and which one is q) then award the first A1. Term $1 = \binom{40}{4} x^4$ or $\binom{40}{4} C_4(x^4)$ or $\frac{40!}{4!36!} x^4$ or $\frac{40(39)(38)(37)}{4!} x^4$ or $91390 x^4$,				
	Term $2 = \binom{40}{5} x^5$ or $\binom{40}{5} (x^5)$ or $\frac{40!}{5!35!} x^5$ or $\frac{40(39)(38)(37)(36)}{5!} x^5$ or $658008 x^5$ are fine for any (or both) of the first two marks in part (b). 2^{nd} A1 for stating $\frac{q}{p}$ as $\frac{658008}{91390}$ or equivalent. Note that $\frac{q}{p}$ must be independent of x . Also note that $\frac{36}{5}$ or 7.2 or any equivalent fraction is fine for the 2^{nd} A1 mark. SC: If candidate states $\frac{p}{q} = \frac{5}{36}$, then award M1A1A0. Note that either $\frac{4!36!}{5!35!}$ or $\frac{5!35!}{4!36!}$ would be awarded M1A1.				

Question 14: June11 Q2

Question Number	Scheme		Marks		
(a)	$\left\{ (3+bx)^5 \right\} = (3)^5 + \frac{{}^5C_1}{(3)^4} (b\underline{x}) + \frac{{}^5C_2}{(3)^3} (b\underline{x})^2 + \dots$ $= 243 + 405bx + 270b^2x^2 + \dots$	243 as a constant term seen. $405bx$ (${}^{5}C_{1} \times \times x$) or (${}^{5}C_{2} \times \times x^{2}$)	B1 B1 <u>M1</u>		
	= 213 + 1030x + 2700 x +	$270b^2x^2$ or $270(bx)^2$	A1	[4]	
(b)	$\{2(\text{coeff } x) = \text{coeff } x^2\} \Rightarrow 2(405b) = 270b^2$	Establishes an equation from their coefficients. Condone 2 on the wrong side of the equation.	M1		
	So, $\left\{b = \frac{810}{270} \Rightarrow \right\} b = 3$	b = 3 (Ignore $b = 0$, if seen.)	A1		
				[2] 6	
(a)	The terms can be "listed" rather than added. Ignore any extra terms. 1^{st} B1: A constant term of 243 seen. Just writing (3) ⁵ is B0. 2^{nd} B1: Term must be simplified to $405bx$ for B1. The x is required for this mark. Note $405 + bx$ is B0. M1: For either the x term or the x^2 term. Requires correct binomial coefficient in any form with the correct power of x , but the other part of the coefficient (perhaps including powers of 3 and/or b) may wrong or missing. Allow binomial coefficients such as $\binom{5}{2}$, $\binom{5}{2}$, $\binom{5}{1}$, $\binom{5}{1}$, $\binom{5}{1}$, $\binom{5}{1}$, $\binom{5}{1}$, $\binom{5}{1}$, so $\binom{5}$				
	or equating their coefficient of x to 2 times that of x^2 , to a Allow this M mark even if the equation is trivial, providing used, eg: $2(405b) = 270b$, but beware $b = 3$ from this, where $b = 3$ from the sequence $b = 3$ from the	ing their coefficients from part (a) hat which is A0. cial Case SC: M1A0 (as equation in will get M1A1 (as coefficients rath	n er than		