Question 1: Jan 05 Q1

Question Number	Scheme	Marks
	$(3+2 x)^{5}=\left(3^{5}\right)+\binom{5}{1} 3^{4} \cdot(2 x)+\binom{5}{2} 3^{3}(2 x)^{2}+\cdots$ $=243,+810 x,+1080 x^{2}$	M1
	B1, A1, A1 (4)	
	M1: Use of binomial leading to correct expression for x or x^{2} term. $\binom{n}{r}$ is ok can be implied.	

Question 2: June 05 Q4

Question number	Scheme	Marks
	(a) $1+12 p x,+\frac{12 \times 11}{2}(p x)^{2}$ (b) $\begin{gathered} 12 p(x)=-q(x) \quad 66 p^{2}\left(x^{2}\right)=11 q\left(x^{2}\right) \\ \Rightarrow \quad 66 p^{2}=-132 p \\ p=-2, \quad q=24 \end{gathered}$ (Equate terms, or coefficients) (Eqn. in p or q only)	$\mathrm{B} 1, \mathrm{~B} 1$ M 1 M 1 $\mathrm{~A} 1, \mathrm{~A} 1$
	(a) Terms can be listed rather than added. First B1: Simplified form must be seen, but may be in (b). (b) First M: May still have $\binom{12}{2}$ or ${ }^{12} C_{2}$ Second M: Not with $\binom{12}{2}$ or ${ }^{12} C_{2}$. Dependent upon having p 's in each term. Zero solutions must be rejected for the final A mark.	

Question 3: Jan 06 Q2

Question	Scheme	Marks
	(a) $(1+p x)^{9}=1+9 p x ;+\binom{9}{2}(p x)^{2}$ (b) $9 p=36, \quad$ so $p=4$ $q=\frac{9 \times 8}{2} p^{2} \quad$ or $\quad 36 p^{2} \quad$ or $36 p$ if that follows from their (a) So $q=576$	B1 B1 M1 A1 M1 Alcao (4)
N.B.	(a) $2^{\text {nd }}$ B1 for $\binom{9}{2}(p x)^{2}$ or better. Condone "," not "+". (b) $1^{\text {st }} \mathrm{M} 1$ for a linear equation for p. $2^{\text {nd }}$ M1 for either printed expression, follow through their p. $1+9 p x+36 p x^{2}$ leading to $p=4, q=144$ scores B1B0 M1A1M1A0 i.e 4/6	

Question 4: June 06 Q1

Question number	Scheme	Marks
	$\begin{aligned} (2+x)^{6}=64 & \ldots \\ & +\left(6 \times 2^{5} \times x\right)+\left(\frac{6 \times 5}{2} \times 2^{4} \times x^{2}\right), \quad+192 x,+240 x^{2} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1, \mathrm{~A} 1, \mathrm{~A} 1 \quad \text { (4) } \end{aligned}$
	The terms can be 'listed' rather than added. M1: Requires correct structure: 'binomial coefficients' (perhaps from Pascal's triangle), increasing powers of one term, decreasing powers of the other term (this may be 1 if factor 2 has been taken out). Allow 'slips'. $\binom{6}{1} \text { and }\binom{6}{2} \text { or equivalent are acceptable, or even }\left(\frac{6}{1}\right) \text { and }\left(\frac{6}{2}\right) .$ Decreasing powers of x : Can score only the M mark. $64(1+\ldots \ldots .$.$) , even if all terms in the bracket are correct, scores max. B1M1A0A0.$	

Question 5: Jan 07 Q2

Question Number (a)	Scheme	Marks
	$\begin{aligned} (1-2 x)^{5} & =1+5 \times(-2 x)+\frac{5 \times 4}{2!}(-2 x)^{2}+\frac{5 \times 4 \times 3}{3!}(-2 x)^{3}+\ldots \\ & =1-10 x+40 x^{2}-80 x^{3}+\ldots \end{aligned}$	$\begin{aligned} & \mathrm{B} 1, \mathrm{M} 1, \mathrm{~A} 1 \text {, } \\ & \mathrm{A} 1 \end{aligned}$
		(4)
(b)	$\begin{align*} (1+x)(1-2 x)^{5} & =(1+x)(1-10 x+\ldots) \\ & =1+x-10 x+\ldots \\ & \approx 1-9 x \quad(*) \tag{*} \end{align*}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \\ \text { (0) } \end{array}$

Notes

$2(\mathrm{a})$
$1-10 x$
$1-10 x$ must be seen in this simplified form in (a).
Correct structure: 'binomial coefficients' (perhaps from Pascal's triangle), increas
Allow slips.
Accept other forms: ${ }^{5} \mathrm{C}_{1},\binom{5}{1}$, also condone $\left(\frac{5}{1}\right)$ but must be attempting to use 5.

Condone use of invisible brackets and using $2 x$ instead of $-2 x$.
Powers of x : at least 2 powers of the type ($2 x)^{a}$ or $2 x^{a}$ seen for $a \geq 1$.
$40 x^{2}(1$ st A1)
$-80 x^{3}(2$ nd A1 $)$

Allow commas between terms. Terms may be listed rather than added
Allow 'recovery' from invisible brackets, so $1^{5}+\binom{5}{1} 1^{4} .-2 x+\binom{5}{2} 1^{3} .-2 x^{2}+\binom{5}{3} 1^{2} .-2 x^{3}$ $=1-10 x+40 x^{2}-80 x^{3}+\ldots$ gains full marks.
$1+5 \times(2 x)+\frac{5 \times 4}{2!}(2 x)^{2}+\frac{5 \times 4 \times 3}{3!}(2 x)^{3}+\ldots=1+10 x+40 x^{2}+80 x^{3}+\ldots$ gains B0M1A1A0
Misread: first 4 terms, descending terms: if correct, would score
B0, M1, 1st A1: one of $40 x^{2}$ and $-80 x^{3}$ correct; 2nd A1: both $40 x^{2}$ and $-80 x^{3}$ correct.

2(a) Long multiplication	
$(1-2 x)^{2}=1-4 x+4 x^{2}, \quad(1-2 x)^{3}=1-6 x+12 x^{2}-8 x^{3},(1-2 x)^{4}=1-8 x+24 x^{2}-32 x^{3}\left\{+16 x^{4}\right\}$ $(1-2 x)^{5}=1-10 x+40 x^{2}+80 x^{3}+\ldots$	
$1-10 x$ $1-10 x$ must be seen in this simplified form in (a).	B 1
Attempt repeated multiplication up to and including $(1-2 x)^{5}$	M 1
$40 x^{2}(1$ st A1)	A 1
$-80 x^{3}($ 2nd A1)	A 1
Misread: first 4 terms, descending terms: if correct, would score B0, M1, 1st A1: one of $40 x^{2}$ and $-80 x^{3}$ correct; 2nd A1: both $40 x^{2}$ and $-80 x^{3}$ correct.	

Question 6: June 07 Q3

Question number	Scheme	Marks
	(a) $1+6 k x \quad$ [Allow unsimplified versions, e.g. $1^{6}+6\left(1^{5}\right) k x,{ }^{6} C_{0}+{ }^{6} C_{1} k x$] $+\frac{6 \times 5}{2}(k x)^{2}+\frac{6 \times 5 \times 4}{3 \times 2}(k x)^{3} \quad$ [See below for acceptable versions] N.B. THIS NEED NOT BE SIMPLIFIED FOR THE A1 (isw is applied) (b) $6 k=15 k^{2} \quad k=\frac{2}{5}$ (or equiv. fraction, or 0.4) (Ignore $k=0$, if seen) (c) $c=\frac{6 \times 5 \times 4}{3 \times 2}\left(\frac{2}{5}\right)^{3}=\frac{32}{25} \quad$ (or equiv. fraction, or 1.28) (Ignore x^{3}, so $\frac{32}{25} x^{3}$ is fine)	B1 M1 A1 (3) M1 A1cso (2) Alcso (1)
	(a) The terms can be 'listed' rather than added. M1: Requires correct structure: 'binomial coefficients' (perhaps from Pascal's triangle), increasing powers of x. Allow a 'slip' or 'slips' such as: $\begin{array}{ll} +\frac{6 \times 5}{2} k x^{2}+\frac{6 \times 5 \times 4}{3 \times 2} k x^{3}, & +\frac{6 \times 5}{2}(k x)^{2}+\frac{6 \times 5}{3 \times 2}(k x)^{3} \\ +\frac{5 \times 4}{2} k x^{2}+\frac{5 \times 4 \times 3}{3 \times 2} k x^{3}, & +\frac{6 \times 5}{2} x^{2}+\frac{6 \times 5 \times 4}{3 \times 2} x^{3} \end{array}$ But: $15+k^{2} x^{2}+20+k^{3} x^{3}$ or similar is M0. Both x^{2} and x^{3} terms must be seen. $\binom{6}{2}$ and $\binom{6}{3}$ or equivalent such as ${ }^{6} C_{2}$ and ${ }^{6} C_{3}$ are acceptable, and even $\left(\frac{6}{2}\right)$ and $\left(\frac{6}{3}\right)$ are acceptable for the method mark. A1: Any correct (possibly unsimplified) version of these 2 terms. $\binom{6}{2}$ and $\binom{6}{3}$ or equivalent such as ${ }^{6} C_{2}$ and ${ }^{6} C_{3}$ are acceptable. Descending powers of x : Can score the M mark if the required first 4 terms are not seen. Multiplying out $(1+k x)(1+k x)(1+k x)(1+k x)(1+k x)(1+k x):$ M1: A full attempt to multiply out (power 6) B1 and A1 as on the main scheme. (b) M: Equating the coefficients of x and x^{2} (even if trivial, e.g. $6 k=15 k$). Allow this mark also for the 'misread': equating the coefficients of x^{2} and x^{3} An equation in k alone is required for this M mark, although... \ldots condone $6 k x=15 k^{2} x^{2} \Rightarrow\left(6 k=15 k^{2} \Rightarrow\right) k=\frac{2}{5}$.	

Question 7: Jan 08 Q3

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline (a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
& \left(1+\frac{1}{2} x\right)^{10}=1+\binom{10}{1}\left(\frac{1}{2} x\right)+\binom{10}{2}\left(\frac{1}{2} x\right)^{2}+\binom{10}{3}\left(\frac{1}{2} x\right)^{3} \\
& \left.=1+5 x ;+\frac{45}{4} \text { (or } 11.25\right) x^{2}+15 x^{3}(\text { coeffs need to be these, i.e, simplified) }
\end{aligned}
$$

[Allow A1A0, if totally correct with unsimplified, single fraction coefficients)
$$
\begin{aligned}
\left(1+\frac{1}{2} \times 0.01\right)^{10} & =1+5(0.01)+\left(\frac{45}{4} \text { or } 11.25\right)(0.01)^{2}+15(0.01)^{3} \\
& =1+0.05+0.001125+0.000015 \\
& =1.05114 \quad \text { cao }
\end{aligned}
$$

 \&

M1 A1

A1; A1 (4)

M1 A1 $\sqrt{ }$

A1 (3) [7]
\end{tabular}

\hline Notes: \& | (a) For M1 first A1: Consider underlined expression only. |
| :--- |
| M1 Requires correct structure for at least two of the three terms: |
| (i) Must be attempt at binomial coefficients. |
| [Be generous :allow all notations e.g. ${ }^{10} C_{2}$, even $\left(\frac{10}{2}\right)$; allow "slips".] |
| (ii) Must have increasing powers of x, |
| (iii) May be listed, need not be added; this applies for all marks. |
| First A1: Requires all three correct terms but need not be simplified, allow $1{ }^{10}$ etc, ${ }^{10} C_{2}$ etc, and condone omission of brackets around powers of $1 / 2 x$ Second A1: Consider as B1: $\mathbf{1 + 5} \boldsymbol{x}$ can score A1 on Epen, even after M0 |
| (b) For M1: Substituting their (0.01) into their (a) result |
| [$0.1,0.001,0.25,0.025,0.0025$ acceptable but not 0.005 or 1.005] |
| First A1 (f.t.): Substitution of ($\mathbf{0 . 0 1}$) into their 4 termed expression in (a) |
| Answer with no working scores no marks (calculator gives this answer) | \&

\hline
\end{tabular}

Question 8: June 08 Q3

Question Number	Scheme	Marks
(a)	$(1+a x)^{10}=1+10 a x \ldots \ldots$	B1
	$+\frac{10 \times 9}{2}(a x)^{2}+\frac{10 \times 9 \times 8}{6}(a x)^{3}$	M1
	$+45(a x)^{2},+120(a x)^{3}$ or $+45 a^{2} x^{2},+120 a^{3} x^{3}$	A1 A1 (4)
(b)	$120 a^{3}=2 \times 45 a^{2} \quad a=\frac{3}{4} \text { or equiv. }\left(\text { e.g. } \frac{90}{120}, 0.75\right)$	M1 A1 (2)
		(6 marks)

Question 9: Jan 09 Q1

Question Number	Scheme \quad Marks
	$\begin{array}{ll\|l} (3-2 x)^{5}=243, \quad \ldots \ldots+5 \times(3)^{4}(-2 x)=-810 x \ldots \ldots \\ +\frac{5 \times 4}{2}(3)^{3}(-2 x)^{2}= & +1080 x^{2} & \text { B1, B1 } \end{array}$
Notes	First term must be 243 for B1, writing just 3^{5} is B0 (Mark their final answers except in second line of special cases below). Term must be simplified to $-810 x$ for B1 The x is required for this mark. The method mark (M1) is generous and is awarded for an attempt at Binomial to get the third term. There must be an x^{2} (or no x-i.e. not wrong power) and attempt at Binomial Coefficient and at dealing with powers of 3 and 2 . The power of 3 should not be one, but the power of 2 may be one (regarded as bracketing slip). So allow $\binom{5}{2}$ or $\binom{5}{3}$ or ${ }^{5} C_{2}$ or ${ }^{5} C_{3}$ or even $\left(\frac{5}{2}\right)$ or $\left(\frac{5}{3}\right)$ or use of ' 10 ' (maybe from Pascal's triangle) May see ${ }^{5} C_{2}(3)^{3}(-2 x)^{2}$ or ${ }^{5} C_{2}(3)^{3}\left(-2 x^{2}\right)$ or ${ }^{5} C_{2}(3)^{5}\left(-\frac{2}{3} x^{2}\right)$ or $10(3)^{3}(2 x)^{2}$ which would each score the M1 Alis c.a.o and needs $1080 x^{2}$ (if $1080 x^{2}$ is written with no working this is awarded both marks i.e. Ml Al.)
Special cases	$243+810 x+1080 x^{2}$ is B1B0M1A1 (condone no negative signs) Follows correct answer with $27-90 x+120 x^{2}$ can isw here (sp case)- full marks for correct answer Misreads ascending and gives $-32 x^{5}+240 x^{4}-720 x^{3}$ is marked as B1B0M1A0 special case and must be completely correct. (If any slips could get B0B0M1A0) Ignores 3 and expands $(1 \pm 2 x)^{5}$ is $0 / 4$ $243,-810 x, 1080 x^{2}$ is full marks but $243,-810,1080$ is B1,B0,M1,A0 NB Alternative method $3^{5}\left(1-\frac{2}{3} x\right)^{5}=3^{5}-5 \times 3^{5} \times\left(\frac{2}{3} x\right)+\binom{5}{3} 3^{5}\left(-\frac{2}{3} x\right)^{2}+.$. is B0B0M1A0 - answers must be simplified to $243-810 x+1080 x^{2}$ for full marks (awarded as before) Special case $3\left(1-\frac{2}{3} x\right)^{5}=3-5 \times 3 \times\left(\frac{2}{3} x\right)+\binom{5}{3} 3\left(-\frac{2}{3} x\right)^{2}+$.. is B0, B0, M1, A0 Or $\quad 3(1-2 x)^{5}$ is B0B0M0A0

Question 10: June 09 Q2

Question Number	Scheme Marks
(a)	$(7 \times \ldots \times x)$ or $\left(21 \times \ldots \times x^{2}\right)$ The 7 or 21 can be in 'unsimplified' form. $\begin{aligned} (2+k x)^{7} & =2^{7}+2^{6} \times 7 \times k x+2^{5} \times\binom{ 7}{2} k^{2} x^{2} \\ & =128 ; \quad+448 k x, \quad+672 k^{2} x^{2}\left[\text { or } 672(k x)^{2}\right] \end{aligned}$ (If $672 k x^{2}$ follows $672(k x)^{2}$, isw and allow A1) $6 \times 448 k=672 k^{2}$ $k=4 \quad$ (Ignore $k=0$, if seen)
(a)	The terms can be 'listed' rather than added. Ignore any extra terms. M1 for either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or k) may be wrong or missing. Allow binomial coefficients such as $\binom{7}{1},\left(\frac{7}{1}\right),\binom{7}{2},{ }^{7} C_{1},{ }^{7} C_{2}$. However, $448+k x$ or similar is M0. $\mathrm{B} 1, \mathrm{~A} 1, \mathrm{~A} 1$ for the simplified versions seen above. Alternative: Note that a factor 2^{7} can be taken out first: $2^{7}\left(1+\frac{k x}{2}\right)^{7}$, but the mark scheme still applies. Ignoring subsequent working (isw): Isw if necessary after correct working: e.g. $128+448 k x+672 k^{2} x^{2} \quad$ M1 B1 A1 A1 $=4+14 k x+21 k^{2} x^{2} \quad$ isw (Full marks are still available in part (b)). M1 for equating their coefficient of x^{2} to 6 times that of $x \ldots$ to get an equation in k, \ldots or equating their coefficient of x to 6 times that of x^{2}, to get an equation in k. Allow this M mark even if the equation is trivial, providing their coefficients from part (a) have been used, e.g. $6 \times 448 k=672 k$, but beware $k=4$ following from this, which is A0. An equation in k alone is required for this M mark, so... e.g. $6 \times 448 k x=672 k^{2} x^{2} \Rightarrow k=4$ or similar is M0 A0 (equation in coefficients only is never seen), but ... e.g. $6 \times 448 k x=672 k^{2} x^{2} \Rightarrow 6 \times 448 k=672 k^{2} \Rightarrow k=4$ will get M1 A1 (as coefficients rather than terms have now been considered). The mistake $2\left(1+\frac{k x}{2}\right)^{7}$ would give a maximum of 3 marks: M1B0A0A0, M1A1

Question 11: Jan 10 Q1

Question Number	Scheme	Marks
	$\begin{align*} {\left[(3-x)^{6}\right.} & =] 3^{6}+3^{5} \times 6 \times(-x)+3^{4} \times\binom{ 6}{2} \times(-x)^{2} \\ & =729, \quad-1458 x, \quad+1215 x^{2} \tag{4} \end{align*}$	M1 $\mathrm{B} 1, \mathrm{~A} 1, \mathrm{~A} 1$
Notes	M1 for either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x - condone lack of negative sign and wrong power of 3. This mark may be given if no working is shown, but one of the terms including x is correct. Allow $\frac{6}{1}$, or $\frac{6}{2}$ (must have a power of 3 , even if only power 1) First term must be 729 for $\mathbf{B 1}$, (writing just 3^{6} is $\mathbf{B 0}$) can isw if numbers added to this constant later. Can allow 729(1... Term must be simplified to $-1458 x$ for A1cao. The x is required for this mark. Final A1 is c.a.o and needs to be $+1215 x^{2}$ (can follow omission of negative sign in working) Descending powers of x would be $x^{6}+3 \times 6 \times(-x)^{5}+3^{2} \times\binom{ 6}{4} \times(-x)^{4}+$.. i.e. $x^{6}-18 x^{5}+135 x^{4}+$.. This is M1B1A0A0 if completely "correct" or M1 B0A0A0 for correct binomial coefficient in any form with the correct power of x as before	
Alternative	NB Alternative method: $(3-x)^{6}=3^{6}\left(1+6 \times\left(-\frac{x}{3}\right)+\binom{6}{2} \times\left(-\frac{x}{3}\right)^{2}+..\right)$ is M1B0A0A0 - answers must be simplified to 729, $-1458 x, \quad+1215 x^{2}$ for full marks (awarded as before) The mistake $(3-x)^{6}=3\left(1-\frac{x}{3}\right)^{6}=3\left(1+6 \times\left(-\frac{x}{3}\right)+\times\binom{ 6}{2} \times\left(-\frac{x}{3}\right)^{2}+..\right)$ may also be awarded M1B0A0A0 Another mistake $3^{6}\left(1-6 x+15 x^{2} \ldots\right)=729 \ldots$ would be M1B1A0A0	

Question 12: June 10 Q4

Question Number	Scheme	Marks
		B1 M1 A1 A1 (4)
	(b) $\begin{aligned} 21 a^{2} & =525 \\ a & = \pm 5 \quad \text { (Both values are required) } \\ \text { (The answer } a & =5 \text { with no working scores M1 A0) } \end{aligned}$	M1 A1 (2) 6
	(a) The terms can be 'listed' rather than added. M1: Requires correct structure: a correct binomial coefficient in any form (perhaps from Pascal's triangle) with the correct power of x. Allow missing a 's and wrong powers of a, e.g. $\frac{7 \times 6}{2} a x^{2}, \quad \frac{7 \times 6 \times 5}{3 \times 2} x^{3}$ However, $21+a^{2} x^{2}+35+a^{3} x^{3}$ or similar is M0. $1+7 a x+21+a^{2} x^{2}+35+a^{3} x^{3}=57+\ldots .$. scores the B1 (isw). $\binom{7}{2}$ and $\binom{7}{3}$ or equivalent such as ${ }^{7} C_{2}$ and ${ }^{7} C_{3}$ are acceptable, but not $\left(\frac{7}{2}\right)$ or $\left(\frac{7}{3}\right)$ (unless subsequently corrected). $1^{\text {st }} \mathrm{A} 1$: Correct x^{2} term. $2^{\text {nd }} \mathrm{A} 1$: Correct x^{3} term (The binomial coefficients must be simplified). Special case: If $(a x)^{2}$ and $(a x)^{3}$ are seen within the working, but then lost... $\ldots \mathrm{A} 1 \mathrm{~A} 0$ can be given if $21 a x^{2}$ and $35 a x^{3}$ are both achieved. a's omitted throughout: Note that only the M mark is available in this case. (b) M: Equating their coefficent of x^{2} to 525 . An equation in a or a^{2} alone is required for this M mark, but allow 'recovery' that shows the required coefficient, e.g. $\begin{aligned} 21 a^{2} x^{2}=525 & \Rightarrow 21 a^{2}=525 \text { is acceptable, } \\ \text { but } 21 a^{2} x^{2}=525 & \Rightarrow a^{2}=25 \text { is not acceptable. } \end{aligned}$ After $21 a x^{2}$ in the answer for (a), allow 'recovery' of a^{2} in (b) so that full marks are available for (b) (but not retrospectively for (a)).	

Question 13: Jan 11 Q5

Question 14: June11 Q2

Question Number	Scheme Marks
(a)	$\left\{(3+b x)^{5}\right\}$ $=(3)^{5}+{ }^{5} \mathrm{C}_{1}(3)^{4}(b \underline{x})+{ }^{5} \mathrm{C}_{2}(3)^{3}(b x)^{2}+\ldots$ 243 as a constant term seen. B1 $405 b x$ B1 $=243+405 b x+270 b^{2} x^{2}+\ldots$ $\left({ }^{5} \mathrm{C}_{1} \times \ldots \times x\right)$ or $\left({ }^{5} \mathrm{C}_{2} \times \ldots \times x^{2}\right)$ M1 M1 $270 b^{2} x^{2}$ or $270(b x)^{2}$ A1
(b)	$\left\{2(\right.$ coeff $x)=$ coeff $\left.x^{2}\right\} \Rightarrow 2(405 b)=270 b^{2}$ Establishes an equation from their coefficients. Condone 2 on the wrong side of the equation. M1 So, $\left\{b=\frac{810}{270} \Rightarrow\right\} b=3$ $b=3$ (Ignore $b=0$, if seen.) A1 \quad [2]
(a)	The terms can be "listed" rather than added. Ignore any extra terms. $1^{\text {st }} \mathrm{B} 1$: A constant term of 243 seen. Just writing (3) ${ }^{5}$ is B0. $2^{\text {nd }} \mathrm{B} 1$: Term must be simplified to $405 b x$ for B1. The x is required for this mark. Note $405+b x$ is B 0 . M1: For either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 3 and $/$ or b) may be wrong or missing. Allow binomial coefficients such as $\binom{5}{2},\left(\frac{5}{2}\right),\binom{5}{1},\left(\frac{5}{1}\right),{ }^{5} \mathrm{C}_{2},{ }^{5} \mathrm{C}_{1}$. A1: For either $270 b^{2} x^{2}$ or $270(b x)^{2}$. (If $270 b x^{2}$ follows $270(b x)^{2}$, isw and allow A1.) Alternative: Note that a factor of 3^{5} can be taken out first: $3^{5}\left(1+\frac{b x}{3}\right)^{5}$, but the mark scheme still applies. Ignore subsequent working (isw): Isw if necessary after correct working: e.g. $243+405 b x+270 b^{2} x^{2}+\ldots$ leading to $9+15 b x+10 b^{2} x^{2}+\ldots$ scores B1B1M1A1 isw. Also note that full marks could also be available in part (b), here. Special Case: Candidate writing down the first three terms in descending powers of x usually get $(b x)^{5}+{ }^{5} \mathrm{C}_{4}(3)^{1}(b x)^{4}+{ }^{5} \mathrm{C}_{3}(3)^{2}(b x)^{3}+\ldots=b^{5} x^{5}+15 b^{4} x^{4}+90 b^{3} x^{3}+\ldots$ So award SC: B0B0M1A0 for either $\left({ }^{5} \mathrm{C}_{4} \times \ldots \times x^{4}\right)$ or $\left({ }^{5} \mathrm{C}_{3} \times \ldots \times x^{3}\right)$ or equating their coefficient of x to 2 times that of x^{2}, to get an equation in b. Allow this M mark even if the equation is trivial, providing their coefficients from part (a) have been used, eg: $2(405 b)=270 b$, but beware $b=3$ from this, which is A0. An equation in b alone is required: e.g. $2(405 b) x=270 b^{2} x^{2} \Rightarrow b=3$ or similar will be Special Case SC: M1A0 (as equation in coefficients only is not seen here). e.g. $2(405 b) x=270 b^{2} x^{2} \Rightarrow 2(405 b)=270 b^{2} \Rightarrow b=3$ will get M1A1 (as coefficients rather than terms have now been considered). Note: Answer of 3 from no working scores M1A0. Note: The mistake $k\left(1+\frac{b x}{3}\right)^{5}, k \neq 243$ would give a maximum of 3 marks: B0B0M1A0, M1A1 Note: For $270 b x^{2}$ in part (a), followed by $2(405 b)=270 b^{2} \Rightarrow b=3$, in part (b), allow recovery M1A1.

