Integration : Area and Definite Integrals - Edexcel Past Exam Questions

1.

The line with equation $y=3 x+20$ cuts the curve with equation $y=x^{2}+6 x+10$ at the points A and B, as shown in Figure 2.
(a) Use algebra to find the coordinates of A and the coordinates of B.

The shaded region S is bounded by the line and the curve, as shown in Figure 2.
(b) Use calculus to find the exact area of S.

Figure 1

Figure 1 shows part of a curve C with equation $y=2 x+\frac{8}{x^{2}}-5, x>0$.
The points P and Q lie on C and have x-coordinates 1 and 4 respectively. The region R, shaded in Figure 1, is bounded by C and the straight line joining P and Q.
(a) Find the exact area of R.
(b) Use calculus to show that y is increasing for $x>2$.
3.

Figure 3

Figure 3 shows the shaded region R which is bounded by the curve $y=-2 x^{2}+4 x$ and the line y $=\frac{3}{2}$. The points A and B are the points of intersection of the line and the curve.

Find
(a) the x-coordinates of the points A and B,
(b) the exact area of R.

Jan 06 Q9
4. Use calculus to find the exact value of $\int_{1}^{2}\left(3 x^{2}+5+\frac{4}{x^{2}}\right) \mathrm{d} x$.
5. $\mathrm{f}(x)=x^{3}+3 x^{2}+5$.

Find
(a) $\mathrm{f}^{\prime \prime}(x)$,
(b) $\int_{1}^{2} \mathrm{f}(x) \mathrm{d} x$
6.

Figure 3

Figure 3 shows a sketch of part of the curve with equation $y=x^{3}-8 x^{2}+20 x$. The curve has stationary points A and B.
(a) Use calculus to find the x-coordinates of A and B.
(b) Find the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at A, and hence verify that A is a maximum.

The line through B parallel to the y-axis meets the x-axis at the point N. The region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the line from A to N.
(c) Find $\int\left(x^{3}-8 x^{2}+20 x\right) \mathrm{d} x$.
(d) Hence calculate the exact area of R.
7.

Figure 1 shows a sketch of part of the curve C with equation

$$
y=x(x-1)(x-5) .
$$

Use calculus to find the total area of the finite region, shown shaded in Figure 1, that is between $x=0$ and $x=2$ and is bounded by C, the x-axis and the line $x=2$.

Jan 07 Q7

8. Evaluate $\int_{1}^{8} \frac{1}{\sqrt{ } x} \mathrm{~d} x$, giving your answer in the form $a+b \sqrt{ } 2$, where a and b are integers.

June 07 Q1
9.

Figure 2

In Figure 2 the curve C has equation $y=6 x-x^{2}$ and the line L has equation $y=2 x$.
(a) Show that the curve C intersects with the x-axis at $x=0$ and $x=6$.
(b) Show that the line L intersects the curve C at the points $(0,0)$ and $(4,8)$.

The region R, bounded by the curve C and the line L, is shown shaded in Figure 2.
(c) Use calculus to find the area of R.
10.

Figure 2
Figure 2 shows a sketch of part of the curve with equation $y=10+8 x+x^{2}-x^{3}$.
The curve has a maximum turning point A.
(a) Using calculus, show that the x-coordinate of A is 2 .

The region R, shown shaded in Figure 2, is bounded by the curve, the y-axis and the line from O to A, where O is the origin.
(b) Using calculus, find the exact area of R.
11.

Figure 1
Figure 1 shows part of the curve C with equation $y=(1+x)(4-x)$.
The curve intersects the x-axis at $x=-1$ and $x=4$. The region R, shown shaded in Figure 1, is bounded by C and the x-axis.

Use calculus to find the exact area of R.

Jan 09 Q2

12. Use calculus to find the value of

$$
\int_{1}^{4}(2 x+3 \sqrt{ } x) \mathrm{d} x
$$

13.

Figure 2
The curve C has equation $y=x^{2}-5 x+4$. It cuts the x-axis at the points L and M as shown in Figure 2.
(a) Find the coordinates of the point L and the point M.
(b) Show that the point $N(5,4)$ lies on C.
(c) Find $\int\left(x^{2}-5 x+4\right) \mathrm{d} x$.

The finite region R is bounded by $L N, L M$ and the curve C as shown in Figure 2.
(d) Use your answer to part (c) to find the exact value of the area of R.
14.

Figure 2
Figure 2 shows a sketch of part of the curve C with equation

$$
y=x^{3}-10 x^{2}+k x,
$$

where k is a constant.

The point P on C is the maximum turning point.
Given that the x-coordinate of P is 2 ,
(a) show that $k=28$.

The line through P parallel to the x-axis cuts the y-axis at the point N.
The region R is bounded by C, the y-axis and $P N$, as shown shaded in Figure 2.
(b) Use calculus to find the exact area of R.
15.

Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$
y=(x+1)(x-5)
$$

The curve crosses the x-axis at the points A and B.
(a) Write down the x-coordinates of A and B.

The finite region R, shown shaded in Figure 1, is bounded by C and the x-axis.
(b) Use integration to find the area of R.
16.

Figure 3

The straight line with equation $y=x+4$ cuts the curve with equation $y=-x^{2}+2 x+24$ at the points A and B, as shown in Figure 3.
(a) Use algebra to find the coordinates of the points A and B.

The finite region R is bounded by the straight line and the curve and is shown shaded in Figure 3.
(b) Use calculus to find the exact area of R.

