Differentiation : Modelling \& Stationary Points - Edexcel Past Exam Questions

1.

Figure 3 shows the plan of a stage in the shape of a rectangle joined to a semicircle. The length of the rectangular part is $2 x$ metres and the width is y metres. The diameter of the semicircular part is $2 x$ metres. The perimeter of the stage is 80 m .
(a) Show that the area, $A \mathrm{~m}^{2}$, of the stage is given by

$$
\begin{equation*}
A=80 x-\left(2+\frac{\pi}{2}\right) x^{2} \tag{4}
\end{equation*}
$$

(b) Use calculus to find the value of x at which A has a stationary value.
(c) Prove that the value of x you found in part (b) gives the maximum value of A.
(d) Calculate, to the nearest m^{2}, the maximum area of the stage.
2. Find the coordinates of the stationary point on the curve with equation $y=2 x^{2}-12 x$.
3. The curve C has equation

$$
y=2 x^{3}-5 x^{2}-4 x+2
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Using the result from part (a), find the coordinates of the turning points of C.
(c) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(d) Hence, or otherwise, determine the nature of the turning points of C.

Jan 06 Q7
4. A diesel lorry is driven from Birmingham to Bury at a steady speed of v kilometres per hour. The total cost of the journey, $£ C$, is given by

$$
\begin{equation*}
C=\frac{1400}{v}+\frac{2 v}{7} . \tag{5}
\end{equation*}
$$

(a) Find the value of v for which C is a minimum
(b) Find $\frac{\mathrm{d}^{2} C}{\mathrm{~d} v^{2}}$ and hence verify that C is a minimum for this value of v.
(c) Calculate the minimum total cost of the journey.

Jan 07 Q8
5.

Figure 4
Figure 4 shows a solid brick in the shape of a cuboid measuring $2 x \mathrm{~cm}$ by $x \mathrm{~cm}$ by $y \mathrm{~cm}$.
The total surface area of the brick is $600 \mathrm{~cm}^{2}$.
(a) Show that the volume, $V \mathrm{~cm}^{3}$, of the brick is given by

$$
\begin{equation*}
V=200 x-\frac{4 x^{3}}{3} \tag{4}
\end{equation*}
$$

Given that x can vary,
(b) use calculus to find the maximum value of V, giving your answer to the nearest cm^{3}.
(c) Justify that the value of V you have found is a maximum.
6.

Figure 4

Figure 4 shows an open-topped water tank, in the shape of a cuboid, which is made of sheet metal. The base of the tank is a rectangle x metres by y metres. The height of the tank is x metres.

The capacity of the tank is $100 \mathrm{~m}^{3}$.
(a) Show that the area $A \mathrm{~m}^{2}$ of the sheet metal used to make the tank is given by

$$
\begin{equation*}
A=\frac{300}{x}+2 x^{2} . \tag{4}
\end{equation*}
$$

(b) Use calculus to find the value of x for which A is stationary.
(c) Prove that this value of x gives a minimum value of A.
(d) Calculate the minimum area of sheet metal needed to make the tank.
7. A solid right circular cylinder has radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$.

The total surface area of the cylinder is $800 \mathrm{~cm}^{2}$.
(a) Show that the volume, $V \mathrm{~cm}^{3}$, of the cylinder is given by

$$
\begin{equation*}
V=400 r-\pi r^{3} \tag{4}
\end{equation*}
$$

Given that r varies,
(b) use calculus to find the maximum value of V, to the nearest cm^{3}.
(c) Justify that the value of V you have found is a maximum.
8. The curve C has equation $y=12 \sqrt{ }(x)-x^{\frac{3}{2}}-10, x>0$.
(a) Use calculus to find the coordinates of the turning point on C.
(b) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(c) State the nature of the turning point.
9. $y=x^{2}-k \vee x, \quad$ where k is a constant.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Given that y is decreasing at $x=4$, find the set of possible values of k.
10.

Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$
y=x^{3}-10 x^{2}+k x,
$$

where k is a constant.
The point P on C is the maximum turning point.
Given that the x-coordinate of P is 2 ,
(a) show that $k=28$.
11. The volume $V \mathrm{~cm}^{3}$ of a box, of height $x \mathrm{~cm}$, is given by

$$
V=4 x(5-x)^{2}, \quad 0<x<5 .
$$

(a) Find $\frac{\mathrm{d} V}{\mathrm{~d} x}$.
(b) Hence find the maximum volume of the box.
(c) Use calculus to justify that the volume that you found in part (b) is a maximum.
12.

Figure 2
A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, $x \mathrm{~cm}$, as shown in Figure 2.

The volume of the cuboid is 81 cubic centimetres.
(a) Show that the total length, $L \mathrm{~cm}$, of the twelve edges of the cuboid is given by

$$
\begin{equation*}
L=12 x+\frac{162}{x^{2}} . \tag{3}
\end{equation*}
$$

(b) Use calculus to find the minimum value of L.
(c) Justify, by further differentiation, that the value of L that you have found is a minimum.

