

Variable Acceleration - Edexcel Past Exam Questions MARK SCHEME

Question 1: June 06 Q1

1.	$a = 5 - 2t \implies v = 5t - t^2, +6$	M1 A1, A1	
	$v=0 \implies t^2-5t-6=0$	indep	M1
	(t-6)(t+1)=0	dep	M1
	$t = \underline{6} \underline{s}$		A1
			(6)

Question 2: June 07 Q8

Question Number	Scheme	Marks
(a)	$0 \le t \le 4: \qquad a = 8 - 3t$ $a = 0 \Rightarrow t = 8/3 \text{ s}$	M1 DM1
	$\rightarrow v = 8.\frac{8}{3} - \frac{3}{2} \left(\frac{8}{3}\right)^2 = \frac{32}{3} \text{ (m/s)}$	DM1 A1
	second M1 dependent on the first, and third dependent on the second.	(4)
(b)	$s = 4t^2 - t^3/2$	M1
	t = 4: $s = 64 - 64/2 = 32 m$	M1 A1
(c)	$t > 4$: $v = 0 \Rightarrow t = 8 \text{ s}$	B1 (1)
(d)	Either $t > 4$ $s = 16t - t^2$ (+ C)	M1
	$t = 4, s = 32 \rightarrow C = -16 \Rightarrow s = 16t - t^2 - 16$	M1 A1
	$t = 10 \rightarrow s = 44 \mathrm{m}$	M1 A1
	But direction changed, so: $t = 8$, $s = 48$	M1
	Hence total dist travelled = $48 + 4 = 52 \text{ m}$	DM1 A1 (8)
	Or (probably accompanied by a sketch?)	
	t=4 v=8, t=8 v=0, so area under line = $\frac{1}{2}$ ×(8-4)×8	M1A1A1
	t=8 v=0, t=10 v=-4, so area above line = $\frac{1}{2}$ × (10-8)×4	M1A1A1
	: total distance = $32(\text{from b}) + 16 + 4 = 52 \text{ m}$.	M1A1 (8)

Or M1, A1 for
$$t \ge 4$$
 $\frac{dv}{dt} = -2$, =constant
 $t=4$, $v=8$; $t=8$, $v=0$; $t=10$, $v=-4$
M1, A1 $s = \frac{u+v}{2}t = \frac{32}{2}t$, =16 working for $t=4$ to $t=8$

M1, A1
$$s = \frac{u+v}{2}t = \frac{-4}{2}t$$
, =-4 working for t = 8 to t = 10

M1 Differentiate to obtain acceleration

DM1 set acceleration. = 0 and solve for t

DM1 use their t to find the value of v

A1 32/3, 10.7oro better

OR using trial an improvement:

M1 Iterative method that goes beyond integer values

M1 Establish maximum occurs for t in an interval no bigger than 2.5 < 1.5

M1 Establish maximum occurs for t in an interval no bigger than 2.6<t<2.8

Or M1 Find/state the coordinates of both points where the curve cuts the x axis. DM1 Find the midpoint of these two values. M1A1 as above.

Or M1 Convincing attempt to complete the square:

$$8t - \frac{3t^2}{2} = -\frac{3}{2}(t - \frac{8}{3})^2 + \frac{3}{2} \times \frac{64}{9}$$

DM1 Max value = constant term A1 CSO

M1 Integrate the correct expression

DM1 Substitute t = 4 to find distance (s=0 when t=0 - condone omission / ignoring of constant of integration)

A1 32(m) only

B1
$$t=8$$
 (s) only

M1 Integrate 16-2t

M1 Use t=4, s= their value from (b) to find the value of the constant of integration. or 32 + integral with a lower limit of 4 (in which case you probably see these two marks

occurring with the next two. First A1 will be for 4 correctly substituted.)

A1 $s = 16t - t^2 - 16$ or equivalent

M1 substitute t = 10

A1 44

M1 Substitute t = 8 (their value from (c))

DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m)

OR the candidate who recognizes v = 16 - 2t as a straight line can divide the shape into two triangles:

M1 distance for t = 4 to t = candidates's $8 = \frac{1}{2} x$ change in time x change in speed.

A1 8-4

A1 8-0

M1 distance for t = their 8 to $t = 10 = \frac{1}{2} x$ change in time x change in speed.

A1 10-8

A1 0-(-4)

M1 Total distance = their (b) plus the two triangles (=32 + 16 + 4).

A1 52(m)

NB: This order on epen grid (the A's and M's will not match up.)

Question 3: Jan 09 Q4

(a)
$$v = 10t - 2t^2$$
, $s = \int vdt$
 $= 5t^2 - \frac{2t^3}{3}(+C)$
 $t = 6 \Rightarrow s = 180 - 144 = \underline{36}$ (m)

(b) $\underline{s} = \int vdt = \frac{-432t^{-1}}{-1}(+K) = \frac{432}{t}(+K)$
 $t = 6$, $s = "36" \Rightarrow 36 = \frac{432}{6} + K$

$$\Rightarrow K = -36$$
At $t = 10$, $s = \frac{432}{10} - 36 = 7.2$ (m)

M1

A1

(3)

M1

A1

(4)

A1

(5)

[8]

Question 4: June 09 Q2

Question Number	Scheme	Marks
(a)	$\frac{dv}{dt} = 8 - 2t$	M1
	8 - 2t = 0	M1
	Max $v = 8 \times 4 - 4^2 = 16 (\text{ms}^{-1})$	M1A1 (4)
(b)	$\int 8t - t^2 dt = 4t^2 - \frac{1}{3}t^3 (+c)$ $(t=0, \text{ displacement} = 0 \implies c=0)$	M1A1
	$4T^2 - \frac{1}{3}T^3 = 0$	DM1
	$T^2(4-\frac{T}{3})=0 \Rightarrow T=0.12$	DM1
	T = 12 (seconds)	A1 (5)

Question 5: Jan 10 Q1

Question Number	Scheme	Marks
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 6t - 4$ $6t - 4 = 0 \Rightarrow t = \frac{2}{3}$	M1 A1
	$s = \int 3t^2 - 4t + 3 dt = t^3 - 2t^2 + 3t (+c)$	M1 A1
	$t = \frac{2}{3} \Rightarrow s = -\frac{16}{27} + 2$ so distance is $\frac{38}{27}$ m	M1 A1
		[8]

Question 6: June 10 Q1

Question Number	Scheme	Marks
	→ 3t+	5
	dv 24.5	-
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 3t + 5$ $v = \int (3t + 5) \mathrm{d}t$	M1*
	$v = \frac{3}{2}t^2 + 5t \ (+c)$	A1
	$t = 0$ $v = 2$ \Rightarrow $c = 2$ $v = \frac{3}{2}t^2 + 5t + 2$	B1
	$t = T \qquad 6 = \frac{3}{2}T^2 + 5T + 2$ $12 = 3T^2 + 10T + 4$	DM1*
	$3T^{2} + 10T - 8 = 0$ $(3T - 2)(T + 4) = 0$	M1
	$T = \frac{2}{3}$ $(T = -4)$ $\therefore T = \frac{2}{3}$ (or 0.67)	A1
	$1.1 - \frac{1}{3}$ (Of 0.07)	[6]

Question 7: Jan 11 Q3

(a)	$a = 4t^3 - 12t$ Convincing attempt to integrate $v = t^4 - 6t^2(+c)$	M1 A1	
	Use initial condition to get $v = t^4 - 6t^2 + 8 \text{ (ms}^{-1}\text{)}$.	A1	(3)
(b)	Convincing attempt to integrate $s = \frac{t^5}{5} - 2t^3 + 8t(+0)$ Integral of their v	M1 A1ft	(6,0040)
			(2)
(c)	Set their $v = 0$	M1 DM1	
	Solve a quadratic in t^2 $(t^2-2)(t^2-4)=0 \Rightarrow \text{ at rest when } t=\sqrt{2}, t=2$	A1	
			(3) [8]

Question 8: June 11 Q6

Question Number	Scheme	Marks
(a)	$ \begin{array}{ccc} &\longrightarrow& (t-4) \\ &\nearrow& \\ P & m \\ & O \\ dv \end{array} $	
	$\frac{dv}{dt} = t - 4$ $v = \frac{1}{2}t^2 - 4t(+c)$ $t = 0 v = 6 \Rightarrow c = 6$	M1 A1
	$\therefore v = \frac{1}{2}t^2 - 4t + 6$	M1 A1
(b)	$v = 0$ $0 = t^2 - 8t + 12$ (t-6)(t-2) = 0 t = 6 $t = 2$	M1 DM1 A1
(c)	$x = \frac{t^3}{6} - 2t^2 + 6t + k$	M1 A1 ft
	$x_6 - x_2 = \frac{6^3}{6} - 2 \times 6^2 + 6^2 + k$ $-\left(\frac{2^3}{6} - 2 \times 2^2 + 6 \times 2 + k\right)$ $= -5\frac{1}{3}$	DM1
	:. Distance is $5\frac{1}{3}$ m	A1 (4