Statistical Distribution : Probability Distribution - Edexcel Past Exam Questions

1. The random variable X has probability function

$$
\begin{equation*}
\mathrm{P}(X=x)=k x, \quad x=1,2, \ldots, 5 . \tag{2}
\end{equation*}
$$

(a) Show that $k=\frac{1}{15}$.

Find
(b) $\mathrm{P}(X<4)$,

Jan 05 Q4(edited)
2. The random variable X has probability function

$$
\mathrm{P}(X=x)= \begin{cases}k x, & x=1,2,3, \\ k(x+1), & x=4,5,\end{cases}
$$

where k is a constant.
(a) Find the value of k.
3. The random variable X has probability function

$$
\mathrm{P}(X=x)=\frac{(2 x-1)}{36} \quad x=1,2,3,4,5,6 .
$$

(a) Construct a table giving the probability distribution of X.

Find
(b) $\mathrm{P}(2<X \leq 5)$
4. The random variable X has probability distribution

x	1	3	5	7	9
$\mathrm{P}(X=x)$	0.2	0.3	0.2	q	0.15

Find
(a) the value of q,
(b) $\mathrm{P}(4<X \leq 7)$.

June 07 Q7(edited)

5. Tetrahedral dice have four faces. Two fair tetrahedral dice, one red and one blue, have faces numbered $0,1,2$, and 3 respectively. The dice are rolled and the numbers face down on the two dice are recorded. The random variable R is the score on the red die and the random variable B is the score on the blue die.
(a) Find $\mathrm{P}(R=3$ and $B=0)$.

The random variable T is R multiplied by B.
(b) Complete the diagram below to represent the sample space that shows all the possible values of T.

3				
2		2		
1	0			
0				
	0	1	2	3

Sample space diagram of T
6. The discrete random variable X has probability function

$$
\mathrm{P}(X=x)=\left\{\begin{array}{cl}
a(3-x) & x=0,1,2 \\
b & x=3
\end{array}\right.
$$

(a) Find $\mathrm{P}(X=2)$ and copy and complete the table below.

x	0	1	2	3
$\mathrm{P}(X=x)$	$3 a$	$2 a$		b

Given that $\mathrm{b}=0.4$
(b) find the value of a

Find
(c) $\mathrm{P}(0.5<X<3)$,
7. The probability function of a discrete random variable X is given by

$$
\mathrm{p}(x)=k x^{2}, \quad x=1,2,3 .
$$

where k is a positive constant.
(a) Show that $k=\frac{1}{14}$.

Find
(b) $\mathrm{P}(X \geq 2)$,
8. The discrete random variable X has probability distribution given by

x	-1	0	1	2	3
$\mathrm{P}(X=x)$	$\frac{1}{5}$	a	$\frac{1}{10}$	a	$\frac{1}{5}$

where a is a constant.
(a) Find the value of a.

The random variable $Y=6-2 X$.
(b) Calculate $\mathrm{P}(X \geq Y)$.
9. The discrete random variable X has the probability distribution

x	1	2	3	4
$\mathrm{P}(X=x)$	k	$2 k$	$3 k$	$4 k$

(a) Show that $k=0.1$

Two independent observations X_{1} and X_{2} are made of X.
(b) Show that $\mathrm{P}\left(X_{1}+X_{2}=4\right)=0.1$
(c) Complete the probability distribution table for $X_{1}+X_{2}$.

y	2	3	4	5	6	7	8
$\mathrm{P}\left(X_{1}+X_{2}=y\right)$	0.01	0.04	0.10		0.25	0.24	

(d) Find $\mathrm{P}\left(1.5<X_{1}+X_{2} \leq 3.5\right)$
10. The discrete random variable Y has the probability distribution

y	1	2	3	4
$\mathrm{P}(Y=y)$	0.1	0.4	0.3	c

where c is a constant.
(a) Find the value of c.
(b) Find $\mathrm{P}(3 Y+2 \geq 8)$.
11. A spinner is designed so that the score S is given by the following probability distribution.

s	0	1	2	4	5
$\mathrm{P}(S=s)$	p	0.25	0.25	0.20	0.20

(a) Find the value of p.

Tom and Jess play a game with this spinner. The spinner is spun repeatedly and S counters are awarded on the outcome of each spin. If S is even then Tom receives the counters and if S is odd then Jess receives them. The first player to collect 10 or more counters is the winner.
(b) Find the probability that Jess wins after 2 spins.
(c) Find the probability that Tom wins after exactly 3 spins.
(d) Find the probability that Jess wins after exactly 3 spins.

