

Statistical Distribution : Probability Distribution - Edexcel Past Exam Questions

1. The random variable *X* has probability function

P(X = x) = kx,
$$x = 1, 2, ..., 5.$$

(a) Show that $k = \frac{1}{15}$. (2)

Find

(b) P(X < 4), (2) Jan 05 Q4(*edited*)

2. The random variable *X* has probability function

$$P(X = x) = \begin{cases} kx, & x = 1, 2, 3, \\ k(x+1), & x = 4, 5, \end{cases}$$

where *k* is a constant.

(*a*) Find the value of *k*.

(2) June 05 Q5(*edited*)

3. The random variable *X* has probability function

$$P(X = x) = \frac{(2x-1)}{36} \qquad x = 1, 2, 3, 4, 5, 6.$$

(*a*) Construct a table giving the probability distribution of *X*. (3)

Find

(b) $P(2 < X \le 5)$	(2)
	Jan 07 Q3(edited)

4. The random variable *X* has probability distribution

x	1	3	5	7	9
$\mathbf{P}(X=x)$	0.2	0.3	0.2	q	0.15
L	L	L			

Find

(a) the value of q, (1)

- (b) $P(4 < X \le 7)$.
 - June 07 Q7(edited)

(2)

5. Tetrahedral dice have four faces. Two fair tetrahedral dice, one red and one blue, have faces numbered 0, 1, 2, and 3 respectively. The dice are rolled and the numbers face down on the two dice are recorded. The random variable R is the score on the red die and the random variable B is the score on the blue die.

(a) Find
$$P(R = 3 \text{ and } B = 0)$$
. (2)

The random variable *T* is *R* multiplied by *B*.

(b) Complete the diagram below to represent the sample space that shows all the possible values of T.

2		2		
1	0			
0				
B R	0	1	2	3

Sample space diagram of *T*

(3) Jan 08 Q7(*edited*)

6. The discrete random variable *X* has probability function

$$P(X = x) = \begin{cases} a(3-x) & x = 0, 1, 2\\ b & x = 3 \end{cases}$$

(a) Find P(X = 2) and copy and complete the table below.

x	0	1	2	3
P(X=x)	3 <i>a</i>	2a		b

Given that b = 0.4

(b) find the value of a

Find

0.5 < X < 3),	(2)
(0.5 < X < 3),

June	09	06	(edited)
June	07	VV	cuncu)

(1)

(2)

7. The probability function of a discrete random variable *X* is given by

 $p(x) = kx^2$, x = 1, 2, 3.

where *k* is a positive constant.

(a) Show that $k = \frac{1}{14}$.	(2)
------------------------------------	-----

Find

(b) $P(X \ge 2)$,	(2)
	Jan 10 Q5 (edited)

8. The discrete random variable *X* has probability distribution given by

x	-1	0	1	2	3
$\mathbf{P}(X=x)$	$\frac{1}{5}$	а	$\frac{1}{10}$	а	$\frac{1}{5}$

where *a* is a constant.

<i>(a)</i>	Find the value of <i>a</i> .	(2)
· ·			/

The random variable Y = 6 - 2X.

(*b*) Calculate $P(X \ge Y)$.

(3) June 10 Q3(edited)

9. The discrete random variable *X* has the probability distribution

x	1	2	3	4
$\mathbf{P}(X=x)$	k	2 <i>k</i>	3 <i>k</i>	4k

(a) Show that k = 0.1

Two independent observations X_1 and X_2 are made of X.

(b) Show that $P(X_1 + X_2 = 4) = 0$.	(b)	Show that $P(X_1 + X_2 = 4) =$	0.1
--	-----	--------------------------------	-----

(c) Complete the probability distribution table for $X_1 + X_2$.

у	2	3	4	5	6	7	8
$\mathbf{P}(X_1 + X_2 = y)$	0.01	0.04	0.10		0.25	0.24	

(d) Find P($1.5 < X_1 + X_2 \le 3.5$)

		(2)
Jan	11	Q6

(1)

(2)

(2)

10. The discrete random variable *Y* has the probability distribution

У	1	2	3	4
$\mathbf{P}(Y=y)$	0.1	0.4	0.3	с

where *c* is a constant.

(*a*) Find the value of *c*.

(*b*) Find $P(3Y + 2 \ge 8)$.

(2) June 11 Q3(*edited*)

(1)

(1)

11. A spinner is designed so that the score *S* is given by the following probability distribution.

S	0	1	2	4	5
P(S = s)	р	0.25	0.25	0.20	0.20

(*a*) Find the value of *p*.

Tom and Jess play a game with this spinner. The spinner is spun repeatedly and S counters are awarded on the outcome of each spin. If S is even then Tom receives the counters and if S is odd then Jess receives them. The first player to collect 10 or more counters is the winner.

		June 11 Q8(edited)
(<i>d</i>)	Find the probability that Jess wins after exactly 3 spins.	(3)
(<i>c</i>)	Find the probability that Tom wins after exactly 3 spins.	(4)
(<i>b</i>)	Find the probability that Jess wins after 2 spins.	(2)