

Algebraic Fractions - Edexcel Past Exam Questions MARK SCHEME

Question Number		
	$\frac{5x+1}{(x+2)(x-1)} - \frac{3}{x+2}$	B1
	$= \frac{5x + 1 - 3(x - 1)}{(x + 2)(x - 1)}$ M1 for combining fractions even if the denominator is not lowest common	M1
	$= \frac{2x+4}{(x+2)(x-1)} = \frac{2(x+2)}{(x+2)(x-1)} = \frac{2}{x-1} *$ M1 must have linear numerator	M1 A1 cso (4)

Question Number	Scheme	Marks
Number		Di
	$x^{2} - x - 2 = (x - 2)(x + 1)$ At any stage	B1
	$\frac{2x^2 + 3x}{(2x+3)(x-2)} = \frac{x(2x+3)}{(2x+3)(x-2)} = \frac{x}{x-2}$	B1
	$\frac{2x^2+3x}{(2x+3)(x-2)} - \frac{6}{x^2-x-2} = \frac{x(x+1)-6}{(x-2)(x+1)}$	M1
	$=\frac{x^2 + x - 6}{(x - 2)(x + 1)}$	A1
	$=\frac{(x+3)(x-2)}{(x-2)(x+1)}$	M1 A1
	$=\frac{x+3}{x+3}$	A1 (7)
	x+1	[7]
		11
	Alternative method	
	$x^{2} - x - 2 = (x - 2)(x + 1)$ At any stage	B1
	(2x+3) appearing as a factor of the numerator at any stage	B1
	$\frac{2x^2 + 3x}{(2x+3)(x-2)} - \frac{6}{(x-2)(x+1)} = \frac{(2x^2 + 3x)(x+1) - 6(2x+3)}{(2x+3)(x-2)(x+1)}$	M1
	$=\frac{2x^3 + 5x^2 - 9x - 18}{(2x+3)(x-2)(x+1)}$ can be implied	A1
	$=\frac{(x-2)(2x^2+9x+9)}{(2x+3)(x-2)(x+1)} \text{or} \frac{(2x+3)(x^2+x-6)}{(2x+3)(x-2)(x+1)} \text{or} \frac{(x+3)(2x^2-x-6)}{(2x+3)(x-2)(x+1)}$	M1
	Any one linear factor × quadratic	
	$= \frac{(2x+3)(x-2)(x+3)}{(2x+3)(x-2)(x+1)}$ Complete factors	A1
	$=\frac{x+3}{x+1}$	A1 (7)

Question Number	Scheme	Marks
<i>(a)</i>	$\frac{(3x+2)(x-1)}{(x+1)(x-1)}, = \frac{3x+2}{x+1}$	M1B1, A1 (3)
	Notes	
	M1 attempt to factorise numerator, usual rules	
	B1 factorising denominator seen anywhere in (a),	
	A1 given answer If factorization of donom, not soon, correct answer implies P1	
<i>(b)</i>	If factorisation of denom. not seen, correct answer implies B1 Expressing over common denominator	
(-)	$\frac{3x+2}{x+1} - \frac{1}{x(x+1)} = \frac{x(3x+2) - 1}{x(x+1)}$	M1
	[Or "Otherwise" : $\frac{(3x^2 - x - 2)x - (x - 1)}{x(x^2 - 1)}$]	
	Multiplying out numerator and attempt to factorise	M1
	$[3x^{2} + 2x - 1 \equiv (3x - 1)(x + 1)]$	
	Answer: $\frac{3x-1}{x}$	A1 (3)
		(6 marks)

(a) $f(x) = \frac{(x+2)^2, -3(x+2)+3}{(x+2)^2}$ = $\frac{x^2 + 4x + 4 - 3x - 6 + 3}{(x+2)^2} = \frac{x^2 + x + 1}{(x+2)^2} $ * cso	M1 A1, A1 A1	(4)
(b) $x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$, >0 for all values of x.	M1 A1, A1	(3)
(c) $f(x) = \frac{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}}{\left(x + 2\right)^2}$		
Numerator is positive from (b)		
$x \neq -2 \implies (x+2)^2 > 0$ (Denominator is positive)		
Hence $f(x) > 0$		(1) [8]
Alternative to (b)		
$\frac{\mathrm{d}}{\mathrm{d}x}(x^2+x+1) = 2x+1 = 0 \implies x = -\frac{1}{2} \implies x^2+x+1 = \frac{3}{4}$	M1 A1	
A parabola with positive coefficient of x^2 has a minimum $\Rightarrow x^2 + x + 1 > 0$	A1	(3)
Accept equivalent arguments		

Question Number	Scheme	Marks
(a)	$2x^2 + 3x - 2 = (2x - 1)(x + 2)$ at any stage	B1
	$f(x) = \frac{(2x+3)(2x-1) - (9+2x)}{(2x-1)(x+2)}$ f.t. on error in denominator factors	M1, A1√
	(need not be single fraction) Simplifying numerator to quadratic form	
	simplifying numerator to quadratic form	M1
	Correct numerator $= \frac{4x^2 + 2x - 12}{\left[(2x - 1)(x + 2)\right]}$	A1
	Factorising numerator, with a denominator $=\frac{2(2x-3)(x+2)}{(2x-1)(x+2)}$ o.e.	M1
	$=\frac{4x-6}{2x-1} \qquad (\clubsuit)$	A1 cso (7)
Alt.(a)	$2x^2 + 3x - 2 = (2x - 1)(x + 2)$ at any stage B1	
	$f(x) = \frac{(2x+3)(2x^2+3x-2) - (9+2x)(x+2)}{(x+2)(2x^2+3x-2)}$ M1A1 f.t.	
	$=\frac{4x^3 + 10x^2 - 8x - 24}{(x+2)(2x^2 + 3x - 2)}$	
	$=\frac{2(x+2)(2x^2+x-6)}{(x+2)(2x^2+3x-2)} \text{ or } \frac{2(2x-3)(x^2+4x+4)}{(x+2)(2x^2+3x+2)} \text{ o.e.}$	
	Any one linear factor × quadratic factor in numerator M1, A1	
	$=\frac{2(x+2)(x+2)(2x-3)}{(x+2)(2x^2+3x-2)}$ o.e. M1	
	$=\frac{2(2x-3)}{2x-1} \frac{4x-6}{2x-1} (\texttt{*})$ A1	
Notes: (a)	1 st M1 in either version is for correct method	

(a) 1st M1 in either version is for correct method
1st A1 Allow
$$\frac{2x+3(2x-1)-(9+2x)}{(2x-1)(x+2)}$$
 or $\frac{(2x+3)(2x-1)-9+2x}{(2x-1)(x+2)}$ or $\frac{2x+3(2x-1)-9+2x}{(2x-1)(x+2)}$ (fractions)

2nd M1 in (main a) is for forming 3 term quadratic in numerator
 3rd M1 is for factorising their quadratic (usual rules); factor of 2 need not be extracted
 (*) A1 is given answer so is cso
 Alt :(a) 3rd M1 is for factorising resulting quadratic

Question Scheme Marks Number $\frac{-x^2}{x}$ +1 M1a = 2 stated or implied A1 c = -1 stated or implied A1 $2x^2 - 1 + \frac{x}{x^2 - 1}$ a = 2, b = 0, c = -1, d = 1, e = 0d = 1 and b = 0, e = 0 stated or implied A1 [4]

Question Number	Scheme	Marks
(a)	$x^2 - 2x - 3 = (x - 3)(x + 1)$	B1
	$f(x) = \frac{2(x-1) - (x+1)}{(x-3)(x+1)} \left(or \frac{2(x-1)}{(x-3)(x+1)} - \frac{x+1}{(x-3)(x+1)} \right)$	M1 A1
	$=\frac{x-3}{(x-3)(x+1)}=\frac{1}{x+1}$	A1 cso (4)

Question Number	Scheme	Marks	
(a)	$\frac{2x+2}{x^2-2x-3} - \frac{x+1}{x-3} = \frac{2x+2}{(x-3)(x+1)} - \frac{x+1}{x-3}$ $= \frac{2x+2-(x+1)(x+1)}{(x-3)(x+1)}$	M1 A1	
	$=\frac{(x+1)(1-x)}{(x-3)(x+1)}$	M1 A1 (4)	,
 	Alternative to (a)		
	$\frac{2x+2}{x^2-2x-3} = \frac{2(x+1)}{(x-3)(x+1)} = \frac{2}{x-3}$	M1 A1	
	$\frac{2}{x-3} - \frac{x+1}{x-3} = \frac{2 - (x+1)}{x-3}$	M1	
	$=\frac{1-x}{x-3}$	A1 (4	9

Question Number	Scheme	Marks
Q	$\begin{aligned} \mathbf{f}(x) &= 1 - \frac{2}{(x+4)} + \frac{x-8}{(x-2)(x+4)} \\ x &\in \mathbb{R}, \ x \neq -4, \ x \neq 2. \end{aligned}$	
(a)	$f(x) = \frac{(x-2)(x+4) - 2(x-2) + x - 8}{(x-2)(x+4)}$ An attempt to combine to one fraction Correct result of combining all	М1
	$f(x) = -\frac{1}{(x-2)(x+4)}$ Correct result of combining all three fractions	A1
	$= \frac{x^2 + 2x - 8 - 2x + 4 + x - 8}{(x - 2)(x + 4)}$	
	$= \frac{x^2 + x - 12}{[(x+4)(x-2)]}$ Simplifies to give the correct numerator. Ignore omission of denominator	A1
	$= \frac{(x+4)(x-3)}{[(x+4)(x-2)]}$ An attempt to factorise the numerator.	dM1
	$=\frac{(x-3)}{(x-2)}$ Correct result	A1 cso AG
		(5

Question Number	Scheme	Marks
	$\frac{x+1}{3x^2-3} - \frac{1}{3x+1}$ $= \frac{x+1}{3(x^2-1)} - \frac{1}{3x+1}$	
	$= \frac{x+1}{3(x+1)(x-1)} - \frac{1}{3x+1}$ $x^2 - 1 \rightarrow (x+1)(x-1) \text{ or }$ $3x^2 - 3 \rightarrow (x+1)(3x-3) \text{ or }$ $3x^2 - 3 \rightarrow (3x+3)(x-1)$ seen or implied anywhere in candidate's working.	Award below
	$=\frac{1}{3(x-1)}-\frac{1}{3x+1}$	
	$=\frac{3x+1-3(x-1)}{3(x-1)(3x+1)}$ Attempt to combine.	M1
	or $\frac{3x+1}{3(x-1)(3x+1)} - \frac{3(x-1)}{3(x-1)(3x+1)}$ Correct result.	A1
	Decide to award M1 here!!	M1
	$= \frac{4}{3(x-1)(3x+1)}$ Either $\frac{4}{3(x-1)(3x+1)}$ or $\frac{4}{3}$ $(x-1)(3x+1)$ or $\frac{4}{(3x-3)(3x+1)}$ or $\frac{4}{9x^2-6x-3}$	A1 aef
		[4

Question 11

Question Number	Scheme	Marks
(a)	$\frac{(x+5)(2x-1)}{(x+5)(x-3)} = \frac{(2x-1)}{(x-3)}$	M1 B1 A1 aef
		(3)

www.naikermaths.com

Question Number	Scheme		Ma	arks
(a)	$\frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)}$			
	$= \frac{(4x-1)(2x-1)-3}{2(x-1)(2x-1)}$ $= \frac{8x^3 - 6x - 2}{\{2(x-1)(2x-1)\}}$	An attempt to form a single fraction Simplifies to give a correct quadratic numerator over a correct quadratic denominator	M1 A1 a	aef
	$= \frac{2(x-1)(4x+1)}{\{2(x-1)(2x-1)\}}$ $= \frac{4x+1}{2x-1}$	An attempt to factorise a 3 term quadratic numerator	M1 A1	(4)
(b)	$f(x) = \frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)} - 2, x > 1$			
	$f(x) = \frac{(4x+1)}{(2x-1)} - 2$ $= \frac{(4x+1) - 2(2x-1)}{(2x-1)}$ $= \frac{4x+1 - 4x + 2}{(2x-1)}$	An attempt to form a single fraction	M1	
	$=\frac{3}{(2x-1)}$	Correct result	A1 -	* (2)

Question Number	Scheme	Marks
(a)	$x^2 - 9 = (x + 3)(x - 3)$	B1
	$\frac{4x-5}{(2x+1)(x-3)} - \frac{2x}{(x+3)(x-3)}$	
	$=\frac{(4x-5)(x+3)}{(2x+1)(x-3)(x+3)} - \frac{2x(2x+1)}{(2x+1)(x+3)(x-3)}$	M1
	$=\frac{5x-15}{(2x+1)(x-3)(x+3)}$	M1A1
	$=\frac{5(x-3)}{(2x+1)(x-3)(x+3)}=\frac{5}{(2x+1)(x+3)}$	A1*
		(5)