Radians: Arc Length and Areas of Sectors - Edexcel Past Exam Questions

1.

Figure 1 shows the triangle $A B C$, with $A B=8 \mathrm{~cm}, A C=11 \mathrm{~cm}$ and $\angle B A C=0.7$ radians. The arc $B D$, where D lies on $A C$, is an arc of a circle with centre A and radius 8 cm . The region R, shown shaded in Figure 1, is bounded by the straight lines $B C$ and $C D$ and the arc $B D$.

Find
(a) the length of the arc $B D$,
(b) the perimeter of R, giving your answer to 3 significant figures,
(c) the area of R, giving your answer to 3 significant figures.

Jan 05 Q7
2. In the triangle $A B C, A B=8 \mathrm{~cm}, A C=7 \mathrm{~cm}, \angle A B C=0.5$ radians and $\angle A C B=x$ radians.
(a) Use the sine rule to find the value of $\sin x$, giving your answer to 3 decimal places.

Given that there are two possible values of x,
(b) find these values of x, giving your answers to 2 decimal places.

June 05 Q7
3.

Figure 2

In Figure $2 O A B$ is a sector of a circle, radius 5 m . The chord $A B$ is 6 m long.
(a) Show that $\cos A \hat{O} B=\frac{7}{25}$.
(b) Hence find the angle $A \hat{O} B$ in radians, giving your answer to 3 decimal places.
(c) Calculate the area of the sector $O A B$.
(d) Hence calculate the shaded area.

Figure 2 shows the cross-section $A B C D$ of a small shed.
The straight line $A B$ is vertical and has length 2.12 m .
The straight line $A D$ is horizontal and has length 1.86 m .
The curve $B C$ is an arc of a circle with centre A, and $C D$ is a straight line.
Given that the size of $\angle B A C$ is 0.65 radians, find
(a) the length of the $\operatorname{arc} B C$, in m , to 2 decimal places,
(b) the area of the sector $B A C$, in m^{2}, to 2 decimal places,
(c) the size of $\angle C A D$, in radians, to 2 decimal places,
(d) the area of the cross-section $A B C D$ of the shed, in m^{2}, to 2 decimal places.
5.

Figure 2

Figure 2 shows a plan of a patio. The patio $P Q R S$ is in the shape of a sector of a circle with centre Q and radius 6 m .

Given that the length of the straight line $P R$ is $6 \sqrt{3} \mathrm{~m}$,
(a) find the exact size of angle $P Q R$ in radians.
(b) Show that the area of the patio $P Q R S$ is $12 \pi \mathrm{~m}^{2}$.
(c) Find the exact area of the triangle $P Q R$.
(d) Find, in m^{2} to 1 decimal place, the area of the segment $P R S$.
(e) Find, in m to 1 decimal place, the perimeter of the patio $P Q R S$.
6. A circle C has centre $M(6,4)$ and radius 3 .
(a) Write down the equation of the circle in the form

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}=r^{2} . \tag{2}
\end{equation*}
$$

Figure 3 shows the circle C. The point T lies on the circle and the tangent at T passes through the point $P(12,6)$. The line $M P$ cuts the circle at Q.
(b) Show that the angle $T M Q$ is 1.0766 radians to 4 decimal places.

The shaded region $T P Q$ is bounded by the straight lines $T P, Q P$ and the arc $T Q$, as shown in Figure 3.
(c) Find the area of the shaded region $T P Q$. Give your answer to 3 decimal places.
7.

Figure 1
Figure 1 shows $A B C$, a sector of a circle with centre A and radius 7 cm .
Given that the size of $\angle B A C$ is exactly 0.8 radians, find
(a) the length of the arc $B C$,
(b) the area of the sector $A B C$.

The point D is the mid-point of $A C$. The region R, shown shaded in Figure 1, is bounded by $C D, D B$ and the arc $B C$.

Find
(c) the perimeter of R, giving your answer to 3 significant figures,
(d) the area of R, giving your answer to 3 significant figures.
8.

Figure 3
The shape $B C D$ shown in Figure 3 is a design for a logo.
The straight lines $D B$ and $D C$ are equal in length. The curve $B C$ is an arc of a circle with centre A and radius 6 cm . The size of $\angle B A C$ is 2.2 radians and $A D=4 \mathrm{~cm}$.

Find
(a) the area of the sector $B A C$, in cm^{2},
(b) the size of $\angle D A C$, in radians to 3 significant figures,
(c) the complete area of the logo design, to the nearest cm^{2}.
9.

Figure 2
Figure 2 shows a closed box used by a shop for packing pieces of cake. The box is a right prism of height $h \mathrm{~cm}$. The cross section is a sector of a circle. The sector has radius $r \mathrm{~cm}$ and angle 1 radian.

The volume of the box is $300 \mathrm{~cm}^{3}$.
(a) Show that the surface area of the box, $S \mathrm{~cm}^{2}$, is given by

$$
\begin{equation*}
S=r^{2}+\frac{1800}{r} . \tag{5}
\end{equation*}
$$

(b) Use calculus to find the value of r for which S is stationary.
(c) Prove that this value of r gives a minimum value of S.
(d) Find, to the nearest cm^{2}, this minimum value of S.
10.

Figure 1
An emblem, as shown in Figure 1, consists of a triangle $A B C$ joined to a sector $C B D$ of a circle with radius 4 cm and centre B. The points A, B and D lie on a straight line with $A B=5 \mathrm{~cm}$ and $B D=4 \mathrm{~cm}$. Angle $B A C=0.6$ radians and $A C$ is the longest side of the triangle $A B C$.
(a) Show that angle $A B C=1.76$ radians, correct to three significant figures.
(b) Find the area of the emblem.
11.

Figure 1
Figure 1 shows the sector $O A B$ of a circle with centre O, radius 9 cm and angle 0.7 radians.
(a) Find the length of the arc $A B$.
(b) Find the area of the sector $O A B$.

The line $A C$ shown in Figure 1 is perpendicular to $O A$, and $O B C$ is a straight line.
(c) Find the length of $A C$, giving your answer to 2 decimal places.

The region H is bounded by the $\operatorname{arc} A B$ and the lines $A C$ and $C B$.
(d) Find the area of H, giving your answer to 2 decimal places.
12. In the triangle $A B C, A B=11 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $C A=8 \mathrm{~cm}$.
(a) Find the size of angle C, giving your answer in radians to 3 significant figures.
(b) Find the area of triangle $A B C$, giving your answer in cm^{2} to 3 significant figures.

Jan 11 Q2
13.

Figure 1
The shape shown in Figure 1 is a pattern for a pendant. It consists of a sector $O A B$ of a circle centre O, of radius 6 cm , and angle $A O B=\frac{\pi}{3}$. The circle C, inside the sector, touches the two straight edges, $O A$ and $O B$, and the arc $A B$ as shown.

Find
(a) the area of the sector $O A B$,
(b) the radius of the circle C.

The region outside the circle C and inside the sector $O A B$ is shown shaded in Figure 1.
(c) Find the area of the shaded region.

June 11 Q5

