

Functions- Edexcel Past Exam Questions MARK SCHEME

Question 1: June 05 Q3

Question Number	Scheme	Marks
(a)	$\frac{5x+1}{(x+2)(x-1)} - \frac{3}{x+2}$	B1
	$= \frac{5x+1-3(x-1)}{(x+2)(x-1)}$	M1
	M1 for combining fractions even if the denominator is not lowest common	
	$= \frac{2x+4}{(x+2)(x-1)} = \frac{2(x+2)}{(x+2)(x-1)} = \frac{2}{x-1}$	M1 A1 cso
	(x+2)(x-1) $(x+2)(x-1)$ $x-1M1 must have linear numerator$	(4)
(b)	$y = \frac{2}{x-1} \implies xy - y = 2 \implies xy = 2 + y$	M1A1
	$f^{-1}(x) = \frac{2+x}{x}$ o.e.	A1 (3)
(c)	$fg(x) = \frac{2}{x^2 + 4} \text{(attempt)} \qquad \left[\frac{2}{"g" - 1} \right]$	M1
	Setting $\frac{2}{x^2+4} = \frac{1}{4}$ and finding $x^2 =; x = \pm 2$	M1; A1 (3)
		[10]

Question 2: Jan 06 Q8

Question Number	Scheme	Marks
	$= e^{4x}e^{2\ln 2}$ $= e^{4x}e^{\ln 4}$	M1 M1 M1 A1 (4)
	(Hence gf: $x \mapsto 4e^{4x}, x \in \square$) (b)	
	Shape and point O x	B1 (1)
		B1 (1)

Question 3: June 06 Q7

Question Number	Scheme	Marks
(a)	Log graph: Shape	B1
	Intersection with –ve x-axis	dB1
	$(0, \ln k), (1-k, 0)$	B1
	Mod graph :V shape, vertex on +ve x-axis	B1
	$(0, k)$ and $\left(\frac{k}{2}, 0\right)$	B1 (5)
(b)	$f(x) \in R$, $-\infty < f(x) < \infty$, $-\infty < y < \infty$	B1 (1)
(c)	$fg\left(\frac{k}{4}\right) = \ln\{k + \left \frac{2k}{4} - k\right \} \text{or} f\left(\left -\frac{k}{2}\right \right)$	M1
	$= \ln\left(\frac{3k}{2}\right)$	A1 (2)

Question 4: Jan 07 Q6

Question Number	Scheme	Mark	(S
	(a) $y = \ln(4-2x)$ $e^y = 4-2x$ leading to $x = 2-\frac{1}{2}e^y$ Changing subject and removing $\ln y = 2-\frac{1}{2}e^x \implies f^{-1} \mapsto 2-\frac{1}{2}e^x *$ cso Domain of f^{-1} is	M1 A1 A1 B1	(4)
	(b) Range of f^{-1} is $f^{-1}(x) < 2$ (and $f^{-1}(x) \in I$)	В1	(1)
	(c) 2 Shape 1.5 ln 4	B1 B1 B1	
	y=2	B1	(4)

www.naikermaths.com

Question 5: June 07 Q5

Question Number	Scheme		Marks
(a)	Finding g(4) = k and f(k) = or fg(x) = $\ln \left(\frac{4}{x-3} \right)$	-1)	M1
	[f(2) = ln(2x2 - 1)] $fg(4) = ln(4 - 1)]$	$= \ln 3$	A1 (2)
(b)	$y = \ln(2x-1)$ \Rightarrow $e^y = 2x-1$ or $e^x = 2y-1$		M1, A1
	$f^{-1}(x) = \frac{1}{2}(e^x + 1)$ Allow $y = \frac{1}{2}(e^x + 1)$		A1
	Domain $x \in \Re$ [Allow \Re , all reals, $(-\infty, \infty)$] independent	B1 (4)
(c)	*^ / (Shape, and x-axis should appear to be asymptote	B1
	$\frac{2}{3}$ $x = 3$	Equation x = 3 needed, may see in diagram (ignore others)	B1 ind.
	0 3 x	Intercept $(0, \frac{2}{3})$ no other; accept $y = \frac{2}{3}$ (0.67) or on graph	B1 ind (3)
(d)	$\frac{2}{x-3} = 3$ $\Rightarrow x = 3\frac{2}{3}$ or exact equiv.		B1
	$\frac{2}{x-3} = -3$, $\Rightarrow x = 2\frac{1}{3}$ or exact equiv. Note: $2 = 3(x+3)$ or $2 = 3(-x-3)$ o.e. is M0A0		M1, A1 (3)
Alt:	Squaring to quadratic $(9x^2 - 54x + 77 = 0)$ and sol	ving M1; B1A1	(12 marks)

Question 6: Jan 08 Q8

Question Number	Scheme	Marks	3
	(a) $x = 1 - 2y^3 \implies y = \left(\frac{1 - x}{2}\right)^{\frac{1}{3}} \text{ or } \sqrt[3]{\frac{1 - x}{2}}$	M1 A1	(2)
	$f^{-1}: x \mapsto \left(\frac{1-x}{2}\right)^{\frac{1}{3}}$ Ignore domain		
	(b) $gf(x) = \frac{3}{1 - 2x^3} - 4$	M1 A1	
	$=\frac{3-4(1-2x^3)}{1-2x^3}$	M1	
	$= \frac{8x^3 - 1}{1 - 2x^3} *$ cso	A1	(4)
	$gf: x \mapsto \frac{8x^3 - 1}{1 - 2x^3}$ Ignore domain		
	(c) $8x^3 - 1 = 0$ Attempting solution of numerator = 0	M1	
	$x = \frac{1}{2}$ Correct answer and no additional answers	A1	(2)
	(d) $\frac{dy}{dx} = \frac{(1 - 2x^3) \times 24x^2 + (8x^3 - 1) \times 6x^2}{(1 - 2x^3)^2}$	M1 A1	
	$=\frac{18x^2}{\left(1-2x^3\right)^2}$	A1	
	Solving their numerator = 0 and substituting to find y .	M1	
	x = 0, y = -1	A1	(5) [13]

Question 7: June 08 Q4

Question Number	Scheme	Marks
(a)	$x^2-2x-3=(x-3)(x+1)$	B1
	$f(x) = \frac{2(x-1)-(x+1)}{(x-3)(x+1)} \left(or \frac{2(x-1)}{(x-3)(x+1)} - \frac{x+1}{(x-3)(x+1)} \right)$	M1 A1
	$= \frac{x-3}{(x-3)(x+1)} = \frac{1}{x+1} *$	A1 cso (4)
(b)	$\left(0, \frac{1}{4}\right)$ Accept $0 < y < \frac{1}{4}$, $0 < f(x) < \frac{1}{4}$ etc.	B1 B1 (2)
(c)	Let $y = f(x)$ $y = \frac{1}{x+1}$	
	$x = \frac{1}{y+1}$	
	yx + x = 1	
	$y = \frac{1 - x}{x} \qquad \text{or } \frac{1}{x} - 1$	M1 A1
	$\mathbf{f}^{-1}(x) = \frac{1-x}{x}$	
	Domain of f^{-1} is $\left(0, \frac{1}{4}\right)$	B1 ft (3)
(d)	$fg(x) = \frac{1}{2x^2 - 3 + 1}$	
	$\frac{1}{2x^2 - 2} = \frac{1}{8}$	M1
	$\frac{2x^2 - 2}{8} = \frac{1}{8}$ $x^2 = 5$ $x = \pm \sqrt{5}$ both	A1
	$x = \pm \sqrt{5}$ both	A1 (3)
		(12 marks)

Question 8: Jan 09 Q5

Question Number	Scheme	Marks
(a)	$g(x) \ge 1$	B1 (1)
(b)	$fg(x) = f(e^{x^2}) = 3e^{x^2} + lne^{x^2}$ = $x^2 + 3e^{x^2}$ * $(fg: x \mapsto x^2 + 3e^{x^2})$	M1 A1 (2)
(c)	$(\operatorname{lg} \cdot x \mapsto x + 3e^{-})$ $\operatorname{fg}(x) \ge 3$	B1 (1)

Question 9: June 09 Q5

Question Number	Scheme	Marks	s
Q (a)	Curve retains shape when $x > \frac{1}{2} \ln k$	B1	
	Curve reflects through the x-axis when $x < \frac{1}{2} \ln k$	B1	
	O $(\frac{1}{2}\ln k, 0)$ x $(0, k-1)$ and $(\frac{1}{2}\ln k, 0)$ marked in the correct positions.	В1	76
(b)			(3
	Correct shape of curve. The curve should be contained in quadrants 1, 2 and 3 (Ignore asymptote) $(0, \frac{1}{2} \ln k)$	B1	
	$(1-k,0)$ and $(0,\frac{1}{2}\ln k)$	B1	
	, 1		(2
114/14/	Either $\underline{f(x)} > -k$ or $\underline{y} > -k$ or		
(c)	Range of f: $\underline{f(x) > -k}$ or $\underline{y > -k}$ or $\underline{(-k, \infty)}$ $\underline{(-k, \infty)}$ or $\underline{f > -k}$ or Range $> -k$.	B1	
			(1
(d)	$y = e^{2x} - k \implies y + k = e^{2x}$ Attempt to make x (or swapped y) the subject	M1	
	$\Rightarrow \ln(y+k) = 2x$ $\Rightarrow \frac{1}{2}\ln(y+k) = x$ Makes e^{2x} the subject and takes ln of both sides	M1	
	Hence $f^{-1}(x) = \frac{1}{2}\ln(x+k)$ or $\frac{1}{2}\ln(x+k)$ or $\frac{1}{2}\ln(x+k)$	A1 cao	(3
(e)	Either $\underline{x > -k}$ or $\underline{(-k, \infty)}$ or Domain: $\underline{x > -k}$ or $\underline{(-k, \infty)}$ or Domain $x > -k$ or $\underline{(-k, \infty)}$ inequality" their part (c) RANGE answer	B1√	(1
		1	10

Question 10: Jan 10 Q9

Question Number		Scheme	Marks
(i)(a)	$\ln(3x - 7) = 5$ $e^{\ln(3x - 7)} = e^5$	Takes e of both sides of the equation. This can be implied by $3x - 7 = e^5$.	м1
	$3x - 7 = e^5 \implies x = \frac{e^5 + 7}{3} \{ = 51.804 \}$	Then rearranges to make x the subject. Exact answer of $\frac{e^5 + 7}{3}$.	dM1 A1
(b)	$3^x e^{7x+2} = 15$		72
	$\ln\left(3^x e^{7x+2}\right) = \ln 15$	Takes In (or logs) of both sides of the equation.	M1
	$\ln 3^x + \ln e^{7x+2} = \ln 15$	Applies the addition law of logarithms.	M1
	$x \ln 3 + 7x + 2 = \ln 15$	$x\ln 3 + 7x + 2 = \ln 15$	A1 oe
	$x(\ln 3 + 7) = -2 + \ln 15$	Factorising out at least two x terms on one side and collecting number terms on the other side.	ddM1
	$x = \frac{-2 + \ln 15}{7 + \ln 3} \ \left\{ = 0.0874 \right\}$	Exact answer of $\frac{-2 + \ln 15}{7 + \ln 3}$	A1 oe
(ii) (a)	$f(x) = e^{2x} + 3, x \in \square$		
	$y = e^{2x} + 3 \Rightarrow y - 3 = e^{2x}$ $\Rightarrow \ln(y - 3) = 2x$ $\Rightarrow \frac{1}{2}\ln(y - 3) = x$	Attempt to make x (or swapped y) the subject Makes e ^{2x} the subject and takes ln of both sides	M1 M1
	Hence $f^{-1}(x) = \frac{1}{2} \ln(x-3)$	$\frac{\frac{1}{2}\ln(x-3)}{\text{or } f^{-1}(y) = \frac{1}{2}\ln(y-3)} \text{ (see appendix)}$	A1 cao
	$f^{-1}(x)$: Domain: $\underline{x>3}$ or $\underline{(3,\infty)}$	Either $\underline{x > 3}$ or $\underline{(3, \infty)}$ or $\underline{Domain > 3}$.	B1
(b)	$g(x)=\ln(x-1),x\in\square,x>1$		(4
	$fg(x) = e^{2\ln(x-1)} + 3 = \{ = (x-1)^2 + 3 \}$	An attempt to put function g into function f. $e^{2\ln(x-1)} + 3$ or $(x-1)^2 + 3$ or $x^2 - 2x + 4$.	M1 A1 isw
	fg(x): Range: $y > 3$ or $(3, \infty)$	Either $y > 3$ or $(3, \infty)$ or Range > 3 or $fg(x) > 3$.	B1 (3
			[15

Question 11: June 10 Q4

Question Number	Scheme	Marks
(a)	(0.5)	M1A1
	O $(\frac{5}{2},0)$ x	(2
(b)	x = 20	B1
10.5	$2x-5 = -(15+x) \; ; \implies x = -\frac{10}{3}$	M1;A1 oe.
		(3
(c)	fg(2) = f(-3) = 2(-3) - 5 ; = -11 = 11	M1;A1
		(2
(d)	$g(x) = x^2 - 4x + 1 = (x - 2)^2 - 4 + 1 = (x - 2)^2 - 3$. Hence $g_{min} = -3$	M1
	Either $g_{min} = -3$ or $g(x) \ge -3$	B1
	or $g(5) = 25 - 20 + 1 = 6$, i
	$-3 \leqslant g(x) \leqslant 6$ or $-3 \leqslant y \leqslant 6$	A1
		(3
	(a) M1: V or or graph with vertex on the x-axis.	[10
	(a) 111. Vol. of July Will Velica on the Author	
	A1: $(\frac{5}{2}, \{0\})$ and $(\{0\}, 5)$ seen and the graph appears in both the first and second	
	quadrants.	
	(b) M1: Either $2x-5 = -(15+x)$ or $-(2x-5) = 15+x$	
	(c) M1: Full method of inserting $g(2)$ into $f(x) = 2x - 5 $ or for inserting $x = 2$	
	into $2(x^2 - 4x + 1) - 5$. There must be evidence of the modulus being applied.	
	(d) M1: Full method to establish the minimum of g. Eg: $(x \pm \alpha)^2 + \beta$ leading to	
	$g_{min} = \beta$. Or for candidate to differentiate the quadratic, set the result equal to zero,	
	find x and insert this value of x back into $f(x)$ in order to find the minimum.	
	B1: For either finding the correct minimum value of g (can be implied by $g(x) \ge -3$ or $g(x) > -3$) or for stating that $g(5) = 6$.	
	A1: $\underline{-3 \leqslant g(x) \leqslant 6}$ or $\underline{-3 \leqslant y \leqslant 6}$ or $\underline{-3 \leqslant g \leqslant 6}$. Note that: $-3 \leqslant x \leqslant 6$ is A0.	
	Note that: $-3 \le f(x) \le 6$ is A0. Note that: $-3 \ge g(x) \ge 6$ is A0.	
	Note that: $g(x) \ge -3$ or $g(x) > -3$ or $x \ge -3$ or $x > -3$ with no working gains	
	M1B1A0.	
	Note that for the final Accuracy Mark: If a candidate writes down $-3 < g(x) < 6$ or $-3 < y < 6$, then award M1B1A0.	
	If, however, a candidate writes down $g(x) \ge -3$, $g(x) \le 6$, then award A0.	
	If a candidate writes down $g(x) \ge -3$ or $g(x) \le 6$, then award A0.	I

Question 12: Jan 11 Q6

Question Number	Scheme		Marks
(a)	$y = \frac{3-2x}{x-5} \implies y(x-5) = 3-2x$	Attempt to make x (or swapped y) the subject	M
	$xy - 5y = 3 - 2x$ $\Rightarrow xy + 2x = 3 + 5y \Rightarrow x(y + 2) = 3 + 5y$	Collect x terms together and factorise.	м
	$\Rightarrow x = \frac{3+5y}{y+2}$: $f^{-1}(x) = \frac{3+5x}{x+2}$	$\frac{3+5x}{x+2}$	A1 o
	71.2		(3
(b)	Range of g is $-9 \le g(x) \le 4$ or $-9 \le y \le 4$	Correct Range	B (1
(c)		Deduces that g(2) is 0. Seen or implied.	м
	g g(2)=g(0)=-6, from sketch.	-6	A (Z
(d)	fg(8) = f(4)	Correct order g followed by f	M
	$=\frac{3-4(2)}{4-5}=\frac{-5}{-1}=\underline{5}$	5	A
(e)(i)		Correct shape	(7
	6		В
	2 x	(2, {0}),({0}, 6)	В
Question Number	Scheme		Marks
(e)(ii)	y• /	Correct shape	B1
	-6 x	Graph goes through $(\{0\}, 2)$ and $(-6, \{0\})$ which are marked.	B1
			(4
(f)	Domain of g^{-1} is $-9 \le x \le 4$	Either correct answer or a follow through from part (b) answer	B1√ (1

Question 13: June 11 Q4

Question Number	Scheme	Marks
(a)	$y = 4 - \ln(x + 2)$ $\ln(x + 2) = 4 - y$ $x + 2 = e^{4-y}$ $x = e^{4-y} - 2$ $f^{-1}(x) = e^{4-x} - 2$ oe	M1 M1A1
(b)	$x \le 4$	B1 (1)
(c)	$fg(x) = 4 - \ln(e^{x^2} - 2 + 2)$ $fg(x) = 4 - x^2$	M1 dM1A1
(d)	$fg(x) = 4 - x^{-1}$ $fg(x) \le 4$	(3) B1ft (1)
		8 Marks