Functions- Edexcel Past Exam Questions

1. The function f is defined by

$$
\mathrm{f}: x \mapsto \frac{5 x+1}{x^{2}+x-2}-\frac{3}{x+2}, x>1
$$

(a)Show that $\mathrm{f}(x)=\frac{2}{x-1}, x>1$.
(b) Find $\mathrm{f}^{-1}(x)$.

The function g is defined by

$$
\mathrm{g}: x \mapsto x^{2}+5, \quad x \in \mathbb{R} .
$$

(c) Solve $\operatorname{fg}(x)=\frac{1}{4}$.
2. The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}: x \mapsto 2 x+\ln 2, & x \in \mathbb{R}, \\
\mathrm{~g}: x \mapsto \mathrm{e}^{2 x}, & x \in \mathbb{R} .
\end{array}
$$

(a) Prove that the composite function gf is

$$
\begin{equation*}
\mathrm{gf}: x \mapsto 4 \mathrm{e}^{4 x}, \quad x \in \mathbb{R} . \tag{4}
\end{equation*}
$$

(b) Sketch the curve with equation $y=\operatorname{gf}(x)$, and show the coordinates of the point where the curve cuts the y-axis.
(c) Write down the range of gf.
3. For the constant k, where $k>1$, the functions f and g are defined by

$$
\begin{array}{ll}
\text { f: } x \mapsto \ln (x+k), & x>-k, \\
\text { g: } x \mapsto|2 x-k|, & x \in \mathbb{R} .
\end{array}
$$

(a) On separate axes, sketch the graph of f and the graph of g.

On each sketch state, in terms of k, the coordinates of points where the graph meets the coordinate axes.
(b) Write down the range of f .
(c) Find $\mathrm{fg}\left(\frac{k}{4}\right)$ in terms of k, giving your answer in its simplest form.

June 06 Q7 (edited)
4. The function f is defined by

$$
\mathrm{f}: x \mapsto \ln (4-2 x), \quad x<2 \text { and } x \in \mathbb{R} .
$$

(a) Show that the inverse function of f is defined by

$$
\mathrm{f}^{-1}: x \mapsto 2-\frac{1}{2} \mathrm{e}^{x}
$$

and write down the domain of f^{-1}.
(b) Write down the range of f^{-1}.
(c) Sketch the graph of $y=\mathrm{f}^{-1}(x)$. State the coordinates of the points of intersection with the x and y axes.
5. The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}: \mapsto \ln (2 x-1), & x \in \mathbb{R}, \quad x>\frac{1}{2}, \\
\mathrm{~g}: \mapsto \frac{2}{x-3}, & x \in \mathbb{R}, \quad x \neq 3 .
\end{array}
$$

(a) Find the exact value of $\mathrm{fg}(4)$.
(b) Find the inverse function $\mathrm{f}^{-1}(x)$, stating its domain.
(c) Sketch the graph of $y=|\operatorname{g}(x)|$. Indicate clearly the equation of the vertical asymptote and the coordinates of the point at which the graph crosses the y-axis.
(d) Find the exact values of x for which $\left|\frac{2}{x-3}\right|=3$.
6. The functions f and g are defined by

$$
\begin{align*}
& \mathrm{f}: x \mapsto 1-2 x^{3}, \quad x \in \mathbb{R} . \\
& \mathrm{g}: x \mapsto \frac{3}{x}-4, \quad x>0, x \in \mathbb{R} . \tag{2}
\end{align*}
$$

(a) Find the inverse function f^{-1}.
(b) Show that the composite function gf is

$$
\begin{equation*}
\text { gf }: x \rightarrow \frac{8 x^{3}-1}{1-2 x^{3}} \tag{4}
\end{equation*}
$$

(c) Solve $\mathrm{gf}(x)=0$.
7. The function f is defined by

$$
\mathrm{f}: x \mapsto \frac{2(x-1)}{x^{2}-2 x-3}-\frac{1}{x-3}, x>3 .
$$

(a)Show that $\mathrm{f}(x)=\frac{1}{x+1}, x>3$.
(b) Find the range of f .
(c) Find $\mathrm{f}^{-1}(x)$. State the domain of this inverse function.

The function g is defined by

$$
\mathrm{g}: x \mapsto 2 x^{2}-3, \quad x \in \mathbb{R} .
$$

(d) Solve $\operatorname{fg}(x)=\frac{1}{8}$.
8. The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto 3 x+\ln x, \quad x>0, \quad x \in \mathbb{R} \\
& \mathrm{~g}: x \mapsto \mathrm{e}^{x^{2}}, \quad x \in \mathbb{R}
\end{aligned}
$$

(a) Write down the range of g .
(b) Show that the composite function fg is defined by

$$
\begin{equation*}
\mathrm{fg}: x \mapsto x^{2}+3 \mathrm{e}^{x^{2}}, \quad x \in \mathbb{R} \tag{2}
\end{equation*}
$$

(c) Write down the range of fg.
9.

Figure 2

Figure 2 shows a sketch of part of the curve with equation $y=\mathrm{f}(x), x \in \mathbb{R}$.
The curve meets the coordinate axes at the points $A(0,1-k)$ and $B\left(\frac{1}{2} \ln k, 0\right)$, where k is a constant and $k>1$, as shown in Figure 2.

On separate diagrams, sketch the curve with equation
(a) $y=|\mathrm{f}(x)|$,
(b) $y=\mathrm{f}^{-1}(x)$.

Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes.

Given that $\mathrm{f}(x)=\mathrm{e}^{2 x}-k$,
(c) state the range of f ,
(d) find $\mathrm{f}^{-1}(x)$,
(e) write down the domain of f^{-1}.
10. The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}(x)=\mathrm{e}^{2 x}+3, & x \in \mathbb{R}, \\
\mathrm{~g}(x)=\ln (x-1), & x \in \mathbb{R}, \quad x>1 .
\end{array}
$$

(a) Find f^{-1} and state its domain.
(b) Find fg and state its range.

Jan 10 Q9(edited)

11. The function f is defined by

$$
\mathrm{f}: x|\rightarrow| 2 x-5 \mid, \quad x \in \mathbb{R} .
$$

(a) Sketch the graph with equation $y=\mathrm{f}(x)$, showing the coordinates of the points where the graph cuts or meets the axes.
(b) Solve $\mathrm{f}(x)=15+x$.

The function g is defined by

$$
\begin{equation*}
\mathrm{g}: x \mid \rightarrow x^{2}-4 x+1, \quad x \in \mathbb{R}, \quad 0 \leq x \leq 5 . \tag{2}
\end{equation*}
$$

(c) Find $\mathrm{fg}(2)$.
(d) Find the range of g .
12. The function f is defined by

$$
\mathrm{f}: x \mapsto \frac{3-2 x}{x-5}, \quad x \in \mathbb{R}, \quad x \neq 5
$$

(a) Find $\mathrm{f}^{-1}(x)$.

Figure 2
The function g has domain $-1 \leq x \leq 8$, and is linear from $(-1,-9)$ to $(2,0)$ and from $(2,0)$ to $(8,4)$. Figure 2 shows a sketch of the graph of $y=g(x)$.
(b) Write down the range of g .
(c) Find $\mathrm{gg}(2)$.
(d) Find $\mathrm{fg}(8)$.
(e) On separate diagrams, sketch the graph with equation
(i) $y=|\mathrm{g}(x)|$,
(ii) $y=\mathrm{g}^{-1}(x)$.

Show on each sketch the coordinates of each point at which the graph meets or cuts the axes.
(f) State the domain of the inverse function g^{-1}.
13. The function f is defined by

$$
\begin{equation*}
\mathrm{f}: x \mapsto 4-\ln (x+2), \quad x \in \mathbb{R}, \quad x \geq-1 . \tag{3}
\end{equation*}
$$

(a) Find $\mathrm{f}^{-1}(x)$.
(b) Find the domain of f^{-1}.

The function g is defined by

$$
\begin{equation*}
\mathrm{g}: x \mapsto \mathrm{e}^{x^{2}}-2, \quad x \in \mathbb{R} . \tag{3}
\end{equation*}
$$

(c) Find $\mathrm{fg}(x)$, giving your answer in its simplest form.
(d) Find the range of fg .

