

Functions - Edexcel Past Exam Questions

1. The function f is defined by

f:
$$x \mapsto \frac{5x+1}{x^2+x-2} - \frac{3}{x+2}, x > 1.$$

(a) Show that
$$f(x) = \frac{2}{x-1}$$
, $x > 1$. (4)

(b) Find
$$f^{-1}(x)$$
.

The function g is defined by

g:
$$x \mapsto x^2 + 5$$
, $x \in \mathbb{R}$.

(c) Solve
$$fg(x) = \frac{1}{4}$$
. (3)

June 05 Q3

2. The functions f and g are defined by

$$f: x \mapsto 2x + \ln 2, \quad x \in \mathbb{R},$$

$$g: x \mapsto e^{2x}, \qquad x \in \mathbb{R}.$$

(a) Prove that the composite function gf is

$$gf: x \mapsto 4e^{4x}, \qquad x \in \mathbb{R}.$$
 (4)

(b) Sketch the curve with equation y = gf(x), and show the coordinates of the point where the curve cuts the y-axis. (1)

Jan 06 Q8(edited)

3. For the constant k, where k > 1, the functions f and g are defined by

$$f: x \mapsto \ln(x+k), \quad x > -k,$$

$$g: x \mapsto |2x - k|, \quad x \in \mathbb{R}.$$

- (a) On separate axes, sketch the graph of f and the graph of g.On each sketch state, in terms of k, the coordinates of points where the graph meets the coordinate axes.(5)
- (b) Write down the range of f. (1)
- (c) Find $fg\left(\frac{k}{4}\right)$ in terms of k, giving your answer in its simplest form. (2)

June 06 Q7 (edited)

4. The function f is defined by

$$f: x \mapsto \ln (4-2x), x < 2 \text{ and } x \in \mathbb{R}.$$

(a) Show that the inverse function of f is defined by

$$f^{-1}: x \mapsto 2 - \frac{1}{2} e^x$$

and write down the domain of f^{-1} .

(4)

(b) Write down the range of f^{-1} .

(1)

- (c) Sketch the graph of $y = f^{-1}(x)$. State the coordinates of the points of intersection with the x and y axes.
 - **(4)**

Jan 07 Q6(edited)

5. The functions f and g are defined by

$$f: \mapsto \ln(2x-1), \quad x \in \mathbb{R}, \quad x > \frac{1}{2},$$

$$g: \mapsto \frac{2}{x-3}, \qquad x \in \mathbb{R}, \ x \neq 3.$$

- (a) Find the exact value of fg(4). (2)
- (b) Find the inverse function $f^{-1}(x)$, stating its domain. (4)
- (c) Sketch the graph of y = |g(x)|. Indicate clearly the equation of the vertical asymptote and the coordinates of the point at which the graph crosses the y-axis. (3)
- (d) Find the exact values of x for which $\left| \frac{2}{x-3} \right| = 3$. (3)

June 07 Q5

6. The functions f and g are defined by

$$f: x \longrightarrow 1 - 2x^3, \quad x \in \mathbb{R}.$$

$$g: x \mapsto \frac{3}{x} - 4, \quad x > 0, \ x \in \mathbb{R}.$$

- (a) Find the inverse function f^{-1} . (2)
- (b) Show that the composite function gf is

gf:
$$x \to \frac{8x^3 - 1}{1 - 2x^3}$$
. (4)

(c) Solve gf
$$(x) = 0$$
. (2)

Jan 08 Q8(edited)

7. The function f is defined by

f:
$$x \mapsto \frac{2(x-1)}{x^2 - 2x - 3} - \frac{1}{x-3}, \ x > 3.$$

(a) Show that
$$f(x) = \frac{1}{x+1}$$
, $x > 3$. (4)

(c) Find
$$f^{-1}(x)$$
. State the domain of this inverse function. (3)

The function g is defined by

g:
$$x \mapsto 2x^2 - 3$$
, $x \in \mathbb{R}$.

(d) Solve
$$fg(x) = \frac{1}{8}$$
. (3)

June 08 Q4

8. The functions f and g are defined by

$$f: x \mapsto 3x + \ln x, \ x > 0, \ x \in \mathbb{R},$$

$$g: x \mapsto e^{x^2}, x \in \mathbb{R}.$$

(b) Show that the composite function fg is defined by

$$fg: x \mapsto x^2 + 3e^{x^2}, \quad x \in \mathbb{R}.$$

(c) Write down the range of fg. (1)

Jan 09 Q5(edited)

9.

Figure 2

Figure 2 shows a sketch of part of the curve with equation $y = f(x), x \in \mathbb{R}$.

The curve meets the coordinate axes at the points A(0, 1 - k) and $B(\frac{1}{2} \ln k, 0)$, where k is a constant and k > 1, as shown in Figure 2.

On separate diagrams, sketch the curve with equation

$$(a) y = |f(x)|, (3)$$

(b)
$$y = f^{-1}(x)$$
.

Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes.

Given that $f(x) = e^{2x} - k$,

(c) state the range of
$$f$$
, (1)

(d) find
$$f^{-1}(x)$$
, (3)

(e) write down the domain of
$$f^{-1}$$
. (1)

June 09 Q5(edited)

10. The functions f and g are defined by

$$f(x) = e^{2x} + 3, x \in \mathbb{R},$$

$$g(x) = \ln (x-1),$$
 $x \in \mathbb{R}, x > 1.$

(a) Find f^{-1} and state its domain.

(4)

(b) Find fg and state its range.

(3)

Jan 10 Q9(edited)

11. The function f is defined by

$$f: x \longrightarrow |2x - 5|, \quad x \in \mathbb{R}.$$

- (a) Sketch the graph with equation y = f(x), showing the coordinates of the points where the graph cuts or meets the axes. (2)
- (b) Solve f(x) = 15 + x. (3)

The function g is defined by

$$g: x \mid \rightarrow x^2 - 4x + 1, \quad x \in \mathbb{R}, \quad 0 \le x \le 5.$$

- (c) Find fg(2). (2)
- (d) Find the range of g. (3)

June 10 Q4

12. The function f is defined by

f:
$$x \mapsto \frac{3-2x}{x-5}$$
, $x \in \mathbb{R}$, $x \neq 5$.

Figure 2

The function g has domain $-1 \le x \le 8$, and is linear from (-1, -9) to (2, 0) and from (2, 0) to (8, 4). Figure 2 shows a sketch of the graph of y = g(x).

$$(c) \quad \text{Find } gg(2). \tag{2}$$

$$(d) Find fg(8). (2)$$

(e) On separate diagrams, sketch the graph with equation

- (i) y = |g(x)|,
- (ii) $y = g^{-1}(x)$.

Show on each sketch the coordinates of each point at which the graph meets or cuts the axes.

(4)

(f) State the domain of the inverse function g^{-1} .

(1)

Jan 11 Q6

13. The function f is defined by

$$f: x \mapsto 4 - \ln(x+2), \quad x \in \mathbb{R}, \quad x \ge -1.$$

(a) Find
$$f^{-1}(x)$$
. (3)

(b) Find the domain of
$$f^{-1}$$
. (1)

The function g is defined by

$$g: x \mapsto e^{x^2} - 2, \quad x \in \mathbb{R}.$$

- (c) Find fg(x), giving your answer in its simplest form. (3)
- (d) Find the range of fg. (1)

June 11 Q4(edited)