

## Sequences and Series - Edexcel Past Exam Questions

**1.** The second and fourth terms of a geometric series are 7.2 and 5.832 respectively.

The common ratio of the series is positive.

For this series, find

| (a) the common ratio,                                                                                                  | (2)             |
|------------------------------------------------------------------------------------------------------------------------|-----------------|
| (b) the first term,                                                                                                    | (2)             |
| (c) the sum of the first 50 terms, giving your answer to 3 decimal places,                                             | (2)             |
| ( <i>d</i> ) the difference between the sum to infinity and the sum of the first 50 terms, answer to 3 decimal places. | giving your (2) |

| Jan | 05                     | 06  |
|-----|------------------------|-----|
| oun | $\mathbf{v}\mathbf{v}$ | VV. |

2. The first term of a geometric series is 120. The sum to infinity of the series is 480.

| (a) Show that the common ratio, r, is $\frac{3}{4}$ .                                 | (3)       |
|---------------------------------------------------------------------------------------|-----------|
| ( <i>b</i> ) Find, to 2 decimal places, the difference between the 5th and 6th terms. | (2)       |
| (c) Calculate the sum of the first 7 terms.                                           | (2)       |
| The sum of the first $n$ terms of the series is greater than 300.                     |           |
| (d) Calculate the smallest possible value of $n$ .                                    | (4)       |
|                                                                                       | Jan 06 Q4 |



- **3.** A geometric series has first term *a* and common ratio *r*. The second term of the series is 4 and the sum to infinity of the series is 25.
  - (a) Show that  $25r^2 25r + 4 = 0$ .
  - (b) Find the two possible values of r. (2)
  - (c) Find the corresponding two possible values of *a*.
  - (d) Show that the sum,  $S_n$ , of the first *n* terms of the series is given by

$$S_n = 25(1 - r^n).$$
(1)

Given that *r* takes the larger of its two possible values,

(e) find the smallest value of n for which  $S_n$  exceeds 24.

(2)

(4)

(2)

- 4. A geometric series is  $a + ar + ar^2 + ...$ 
  - (a) Prove that the sum of the first *n* terms of this series is given by

$$S_n = \frac{a(1-r^n)}{1-r}$$
. (4)

(b) Find

$$\sum_{k=1}^{10} 100(2^k).$$
(3)

(c) Find the sum to infinity of the geometric series

$$\frac{5}{6} + \frac{5}{18} + \frac{5}{54} + \dots$$
(3)

(d) State the condition for an infinite geometric series with common ratio r to be convergent. (1)

## Jan 07 Q10



| 5. | The fourth term of a geometric series is 10 and the seventh term of the series is 80. |            |
|----|---------------------------------------------------------------------------------------|------------|
|    | For this series, find                                                                 |            |
|    | (a) the common ratio,                                                                 | (2)        |
|    | (b) the first term,                                                                   | (2)        |
|    | (c) the sum of the first 20 terms, giving your answer to the nearest whole number     | . (2)      |
|    |                                                                                       | Jan 08 Q2  |
| 6. | A geometric series has first term 5 and common ratio $\frac{4}{5}$ .                  |            |
|    | Calculate                                                                             |            |
|    | (a) the 20th term of the series, to 3 decimal places,                                 | (2)        |
|    | (b) the sum to infinity of the series.                                                | (2)        |
|    | Given that the sum to $k$ terms of the series is greater than 24.95,                  |            |
|    | (c) show that $k > \frac{\log 0.002}{\log 0.8}$ ,                                     | (4)        |
|    | ( <i>d</i> ) find the smallest possible value of <i>k</i> .                           | (1)        |
|    |                                                                                       | June 08 Q6 |

7. The first three terms of a geometric series are (k + 4), k and (2k - 15) respectively, where k is a positive constant.

|                                                       | Jan 09 Q9 |
|-------------------------------------------------------|-----------|
| ( <i>d</i> ) Find the sum to infinity of this series. | (2)       |
| (c) Find the common ratio of this series.             | (2)       |
| (b) Hence show that $k = 12$ .                        | (2)       |
| (a) Show that $k^2 - 7k - 60 = 0$ .                   | (4)       |



8. The third term of a geometric sequence is 324 and the sixth term is 96.

|                                                                   | June 09 Q5 |
|-------------------------------------------------------------------|------------|
| ( <i>d</i> ) Find the sum to infinity of the sequence.            | (2)        |
| (c) Find the sum of the first 15 terms of the sequence.           | (3)        |
| ( <i>b</i> ) Find the first term of the sequence.                 | (2)        |
| (a) Show that the common ratio of the sequence is $\frac{2}{3}$ . | (2)        |

- 9. The second and fifth terms of a geometric series are 750 and -6 respectively.
  Find

  (a) the common ratio of the series,
  (b) the first term of the series,
  (c) the sum to infinity of the series.

  (2) Jan 11 Q3
- **10.** The second and third terms of a geometric series are 192 and 144 respectively.

| For this series, find                                                             |                           |
|-----------------------------------------------------------------------------------|---------------------------|
| (a) the common ratio,                                                             | (2)                       |
| (b) the first term,                                                               | (2)                       |
| (c) the sum to infinity,                                                          | (2)                       |
| (d) the smallest value of $n$ for which the sum of the first $n$ terms of the ser | ties exceeds 1000.<br>(4) |

## June 11 Q6