Name:

Total Marks:

Pure Mathematics 1

Advanced Subsidiary
Practice Paper M10
Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE AS Level Specifications
- There are 13 questions in this question paper
- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

- (a) Show that $x^2 + 6x + 11$ can be written as $(x + p)^2 + q$ where p and q are integers to be found.
- (b) In the space at the top of page 7, sketch the curve with equation $y = x^2 + 6x + 11$, showing clearly any intersections with the coordinate axes. (2)
- (c) Find the value of the discriminant of $x^2 + 6x + 11$ (2)

(Total 6 marks)

Question 2

(a) Simplify fully

$$\frac{2x^2 + 9x - 5}{x^2 + 2x - 15} \tag{3}$$

Given that

$$ln(2x^2+9x-5)=1+ln(x^2+2x-15), x \neq -5,$$

(b) find x in terms of e. (4)

(Total 7 marks)

Question 3

- (a) On the axes below sketch the graphs of
 - (i) y = x (4 x)

(ii)
$$y = x^2 (7 - x)$$

showing clearly the coordinates of the points where the curves cross the coordinate axes. (5)

(b) Show that the x-coordinates of the points of intersection of

$$y = x(4-x)$$
 and $y = x^2(7-x)$

are given by the solutions to the equation $x(x^2 - 8x + 4) = 0$ (3)

The point A lies on both of the curves and the x and y coordinates of A are both positive.

(c) Find the exact coordinates of A, leaving your answer in the form ($p + q\sqrt{3}$, $r + s\sqrt{3}$), where p, q, r and s are integers. (7)

www.naikermaths.com

(Total 15 marks)

- (a) Find an equation of the line joining A(7, 4) and B(2, 0), giving your answer in the form ax+by+c=0, where a, b and c are integers.
- (3)

(b) Find the length of AB, leaving your answer in surd form.

(2)

The point *C* has coordinates (2, t), where t > 0, and AC = AB.

(c) Find the value of t.

(1)

(d) Find the area of triangle ABC.

(2)

(Total 8 marks)

Question 5

The circle C has centre A(2,1) and passes through the point B(10,7).

(a) Find an equation for C.

(4)

The line I_1 is the tangent to C at the point B.

(b) Find an equation for I_1 .

(4)

The line l_2 is parallel to l_1 and passes through the mid-point of AB.

Given that I_2 intersects C at the points P and Q,

(c) find the length of PQ, giving your answer in its simplest surd form.

(3) (Total 11 marks)

Question 6

The curve C has equation y = f(x), x > 0, where

$$\frac{dy}{dx} = 3x - \frac{5}{\sqrt{x}} - 2$$

Given that the point P(4, 5) lies on C, find

(a)
$$f(x)$$
, (5)

(b) an equation of the tangent to C at the point P, giving your answer in the form ax + by + c = 0, where a, b and c are integers. (4)

(Total 9 marks)

www.naikermaths.com

$$y = x^2 - k \sqrt{x}$$
, where k is a constant.

(a) Find
$$\frac{dy}{dx}$$
.

(b) Given that y is decreasing at x = 4, find the set of possible values of k.

(Total 4 marks)

(2)

Question 8

Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$y = x^3 - 10x^2 + kx,$$

where k is a constant.

The point *P* on *C* is the maximum turning point.

Given that the *x*-coordinate of *P* is 2,

(a) show that
$$k = 28$$
.

The line through P parallel to the x-axis cuts the y-axis at the point N. The region R is bounded by C, the y-axis and PN, as shown shaded in Figure 2.

(b) Use calculus to find the exact area of R.

(6)

(Total 9 marks)

(a) Given that

$$2\log_3(x-5) - \log_3(2x-13) = 1$$
,

show that
$$x^2 - 16x + 64 = 0$$
.

(5)

 $2\log_3(x-5)-\log_3(2x-13)=1.$ (b) Hence, or otherwise, solve

(2)

(Total 7 marks)

Question 10

(a) Given that $5\sin\theta = 2\cos\theta$, find the value of $\tan\theta$.

(1)

(5)

(4)

(b) Solve, for $0 \le x < 360^\circ$,

$$5\sin 2x = 2\cos 2x$$
,

giving your answers to 1 decimal place.

(Total 6 marks)

Question 11

Given that |4i - 2kj| = |3ki - 2j|, find the exact value of the positive constant k.

(Total 4 marks)

Question 12

Prove that the sum of two rational numbers is also a rational number

(3)

(Total 3 marks)

The curve with equation $y = \frac{1}{5}x(10 - x)$ is used to model the arc of a bridge over a road, where x and y are distances in metres, with the origin as shown in Fig. 12.1. The x -axis represents the road surface.

Fig. 12.1

- (i) State the value of x at A, where the arc meets the road.
- (ii) Using symmetry, or otherwise, state the value of x at the maximum point B on the graph. Hence find the height of the arch. (2)
- (iii) Fig. 12.2 shows a lorry which is 4 m high and 3 m wide, with its cross-section modelled as a rectangle. Find the value of d when the lorry is in the centre of the road. Hence show that the lorry can pass through this arch.

(iv) Another lorry, also modelled as having a rectangular cross-section, has height 4.5 m and just touches the arch when it is in the centre of the road. Find the width of this lorry, giving your answer in surd form

(Total 11 marks)

(1)

TOTAL FOR PAPER IS 100 MARKS