

Integration by Substitution - Edexcel Past Exam Questions MARK SCHEME

Question 1: June 05 Q4

Question Number	Scheme	Marks
	$\int \frac{1}{\left(1 - x^2\right)^{\frac{1}{2}}} dx = \int \frac{1}{\left(1 - \sin^2 \theta\right)^{\frac{1}{2}}} \cos \theta d\theta \qquad \text{Use of } x = \sin \theta \text{ and } \frac{dx}{d\theta} = \cos \theta$ $= \int \frac{1}{\cos^2 \theta} d\theta$	M1 M1 A1
	$= \int \sec^2 \theta d\theta = \tan \theta$	M1 A1
	Using the limits 0 and $\frac{\pi}{6}$ to evaluate integral	М1
	$\left[\tan\theta\right]_0^{\frac{\pi}{6}} = \frac{1}{\sqrt{3}} \left(=\frac{\sqrt{3}}{3}\right)$ cao	A1
		[7]
	Alternative for final M1 A1	
	Returning to the variable x and using the limits 0 and $\frac{1}{2}$ to evaluate integral	M1
	$\left[\frac{x}{\sqrt{(1-x^2)}}\right]_0^{\frac{1}{2}} = \frac{1}{\sqrt{3}} \left(=\frac{\sqrt{3}}{3}\right)$ cao	A1

Question 2: Jan 06 Q3

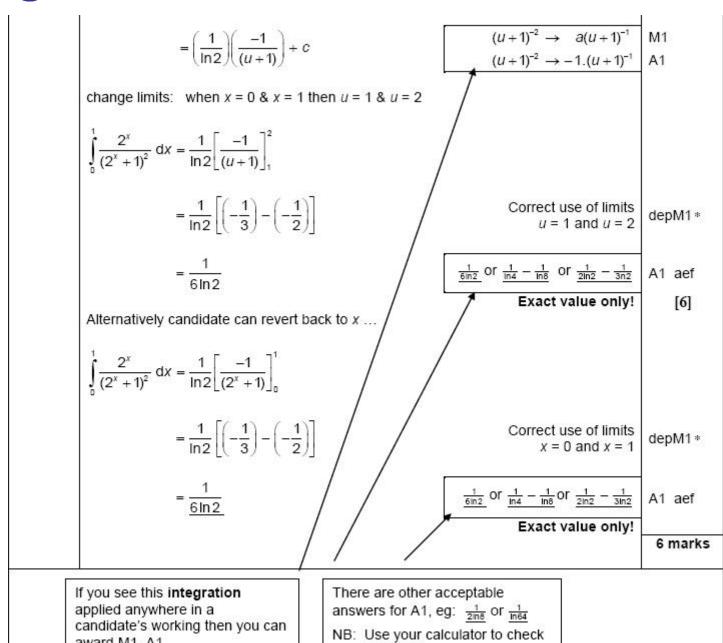
Question Number	Scheme	
	Uses substitution to obtain $x = f(u) \left[\frac{u^2 + 1}{2} \right]$,	M1
	and to obtain $u \frac{du}{dx} = \text{const. or equiv.}$	M1
	Reaches $\int \frac{3(u^2+1)}{2u} u du$ or equivalent	A1
	Simplifies integrand to $\int \left(3u^2 + \frac{3}{2}\right) du$ or equiv.	M1
	Integrates to $\frac{1}{2}u^3 + \frac{3}{2}u$	M1 A1√
	A1√ dependent on all previous Ms	
	Uses new limits 3 and 1 substituting and subtracting (or returning to function of x with old limits)	M1
	To give 16 cso	A1 [8]
	"By Parts" Attempt at " right direction" by parts $\left[3x\left(2x-1\right)^{\frac{1}{2}}\right) - \left\{\int 3\left(2x-1\right)^{\frac{1}{2}} dx\right\}\right] \text{M1}\{\text{M1A1}\}$	
	$(2x-1)^{\frac{3}{2}}$ M1A1 $$	
	Uses limits 5 and 1 correctly; [42 – 26] 16 M1A1	

Question 3: Jan 07 Q8

Question Number	Scheme		Marks	5
	$t = (3x + 1)^{\frac{1}{2}} \implies \frac{dt}{dx} = \frac{1}{2} \cdot 3 \cdot (3x + 1)^{-\frac{1}{2}}$ or $t^2 = 3x + 1 \implies 2t \frac{dt}{dx} = 3$	$A(3x+1)^{-\frac{1}{2}} \text{ or } t \frac{dt}{dx} = A$ $\frac{3}{2}(3x+1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = 3$	M1	
	or $t^2 = 3x + 1 \Rightarrow 2t \frac{dt}{dx} = 3$	$\frac{3}{2}(3x+1)^{-\frac{1}{2}}$ or $2t\frac{dt}{dx} = 3$	A1	
	so $\frac{dt}{dx} = \frac{3}{2.(3x+1)^{\frac{1}{2}}} = \frac{3}{2t} \implies \frac{dx}{dt} = \frac{2t}{3}$	Candidate obtains either $\frac{dt}{dx}$ or $\frac{dx}{dt}$ in terms of t		
	$\therefore I = \int e^{\sqrt{(3x+1)}} dx = \int e^t \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$	and moves on to substitute this into I to convert an integral wrt x to an integral wrt t.	dM1	
	$\therefore I = \int \frac{2}{3} t e^t dt$	$\int \frac{2}{3} t e^t$	A1	
	change limits: when $x = 0$, $t = 1$ & when $x = 5$, $t = 4$	changes limits $x \to t$ so that $0 \to 1$ and $5 \to 4$	В1	
	Hence $I = \int_{1}^{4} \frac{2}{3} t e^{t} dt$; where $a = 1$, $b = 4$, $k = \frac{2}{3}$			
				[5]

Question 4: June 07 Q2

Question Number	Scheme	*	Marks
	$\int_{0}^{1} \frac{2^{x}}{(2^{x} + 1)^{2}} dx$, with substitution $u = 2^{x}$		
	$\frac{du}{dx} = 2^{x}.\ln 2 \implies \frac{dx}{du} = \frac{1}{2^{x}.\ln 2}$	$\frac{du}{dx} = 2^x . ln2$ or $\frac{du}{dx} = u . ln2$ or $(\frac{1}{u}) \frac{du}{dx} = ln2$	B1
	$\int \frac{2^{x}}{(2^{x}+1)^{2}} dx = \left(\frac{1}{\ln 2}\right) \int \frac{1}{(u+1)^{2}} du$	$k \int \frac{1}{(u+1)^2} \mathrm{d}u$ where k is constant	M1*



eg. 0.240449...

award M1, A1

Question 5: Jan 10 Q8

Question Number	Scheme	Marks
	$\frac{\mathrm{d}x}{\mathrm{d}u} = -2\sin u$	B1
	$\int \frac{1}{x^2 \sqrt{4 - x^2}} dx = \int \frac{1}{(2\cos u)^2 \sqrt{4 - (2\cos u)^2}} \times -2\sin u du$	M1
	$= \int \frac{-2\sin u}{4\cos^2 u \sqrt{4\sin^2 u}} du \qquad \text{Use of } 1 - \cos^2 u = \sin^2 u$	M1
	$= -\frac{1}{4} \int \frac{1}{\cos^2 u} \mathrm{d}u \qquad \qquad \pm k \int \frac{1}{\cos^2 u} \mathrm{d}u$	M1
	$= -\frac{1}{4} \tan u \ (+C) $ $\pm k \tan u$	M1
	$x = \sqrt{2} \implies \sqrt{2} = 2\cos u \implies u = \frac{\pi}{4}$	
	$x=1 \Rightarrow 1=2\cos u \Rightarrow u=\frac{\pi}{3}$	M1
	$\left[-\frac{1}{4}\tan u\right]_{\frac{\pi}{3}}^{\frac{\pi}{4}} = -\frac{1}{4}\left(\tan\frac{\pi}{4} - \tan\frac{\pi}{3}\right)$	
	$=-\frac{1}{4}\left(1-\sqrt{3}\right) \left(=\frac{\sqrt{3}-1}{4}\right)$	A1 (7)

Question 6: June 10 Q2

Question Number	Scheme		Marks	
	$\frac{du}{dx} = -\sin x$ $\int \sin x e^{\cos x + 1} dx = -\int e^u du$		B1	
	$\int \sin x e \qquad dx = -\int e du$ $= -e^{u}$ $= -e^{\cos x + 1}$	ft sign error	M1 A1 A1ft	
	$ \begin{bmatrix} -e^{\cos x+1} \end{bmatrix}_0^{\frac{\pi}{2}} = -e^1 - (-e^2) = e(e-1) * $	or equivalent with u	M1	
	= e(e-1) *	eso	A1	(6) [6]

Question 7: Jan 11 Q7

Question Number	Scheme	Marks
$\frac{\mathrm{d}x}{\mathrm{d}u} = 2\left(u - \frac{\mathrm{d}x}{\mathrm{d}x}\right)$	-4)	B1
	$\int \frac{1}{4+\sqrt{(x-1)}} dx = \int \frac{1}{u} \times 2(u-4) du$	M1
	$=\int \left(2-\frac{8}{u}\right)du$	A1
	$=2u-8\ln u$	M1 A1
	$x=2 \Rightarrow u=5, x=5 \Rightarrow u=6$	B1
	$[2u - 8\ln u]_5^6 = (12 - 8\ln 6) - (10 - 8\ln 5)$	M1
	$=2+8\ln\left(\frac{5}{6}\right)$	A1
		(8)

Question 8: June 11 Q4

Question Number	Scheme	Mark	C 5
(a)	$u = x^2 + 2 \implies \frac{\mathrm{d}u}{\mathrm{d}x} = 2x$	В1	
	Area $(R) = \int_0^{\sqrt{2}} x^3 \ln(x^2 + 2) dx$	B1	
	$\int x^3 \ln(x^2 + 2) dx = \int x^2 \ln(x^2 + 2) x dx = \int (u - 2) (\ln u) \frac{1}{2} du$	M1	
	Hence Area $(R) = \frac{1}{2} \int_{2}^{4} (u-2) \ln u du$ *	A1	(4)
	$\int (u-2)\ln u \mathrm{d}u = \left(\frac{u^2}{2} - 2u\right) \ln u - \int \left(\frac{u^2}{2} - 2u\right) \frac{1}{u} \mathrm{d}u$	M1 A1	
	$= \left(\frac{u^2}{2} - 2u\right) \ln u - \int \left(\frac{u}{2} - 2\right) du$ $= \left(\frac{u^2}{2} - 2u\right) \ln u - \left(\frac{u^2}{4} - 2u\right) (+C)$	-M1 A1	
(b)	Area $(R) = \frac{1}{2} \left[\left(\frac{u^2}{2} - 2u \right) \ln u - \left(\frac{u^2}{4} - 2u \right) \right]_2^4$ = $\frac{1}{2} \left[(8 - 8) \ln 4 - 4 + 8 - ((2 - 4) \ln 2 - 1 + 4) \right]$	- _{M1}	
	$= \frac{1}{2}(2\ln 2 + 1)$ $= \ln 2 + \frac{1}{2}$	A1	(6)