Name:

Total Marks:

A level Applied Mathematics Paper 3B Mechanics

Practice Paper J13

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 9 questions in this question paper
- The total mark for this paper is 102.
- The marks for **each** question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

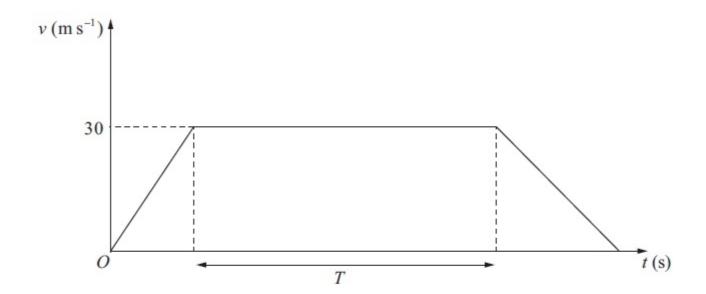


Figure 4

The velocity-time graph in Figure 4 represents the journey of a train P travelling along a straight horizontal track between two stations which are 1.5 km apart. The train P leaves the first station, accelerating uniformly from rest for 300 m until it reaches a speed of 30 m s⁻¹. The train then maintains this speed for T seconds before decelerating uniformly at 1.25 m s⁻², coming to rest at the next station.

(a) Find the acceleration of *P* during the first 300 m of its journey. (2)

(b) Find the value of
$$T$$
. (5)

A second train Q completes the same journey in the same total time. The train leaves the first station, accelerating uniformly from rest until it reaches a speed of V m s⁻¹ and then immediately decelerates uniformly until it comes to rest at the next station.

(c) Sketch on the diagram above, a velocity-time graph which represents the journey of train Q. (2)

(d) Find the value of V. (6)

(Total 15 marks)

A steel girder AB, of mass 200 kg and length 12 m, rests horizontally in equilibrium on two smooth supports at C and at D, where AC = 2 m and DB = 2 m. A man of mass 80 kg stands on the girder at the point P, where AP = 4 m, as shown in Figure 1.

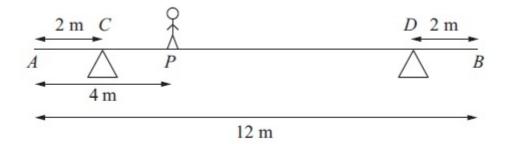


Figure 1

The man is modelled as a particle and the girder is modelled as a uniform rod.

(a) Find the magnitude of the reaction on the girder at the support at C.

The support at D is now moved to the point X on the girder, where XB = x metres. The man remains on the girder at P, as shown in Figure 2.

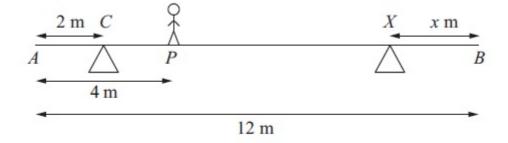


Figure 2

Given that the magnitudes of the reactions at the two supports are now equal and that the girder again rests horizontally in equilibrium, find

(b) the magnitude of the reaction at the support at
$$X$$
, (2)

(c) the value of
$$x$$
. (4)

(Total 9 marks)

(3)

A particle *P* of mass 2 kg is attached to one end of a light string, the other end of which is attached to a fixed point *O*. The particle is held in equilibrium, with *OP* at 30° to the downward vertical, by a force of magnitude *F* newtons. The force acts in the same vertical plane as the string and acts at an angle of 30° to the horizontal, as shown in Figure 3.

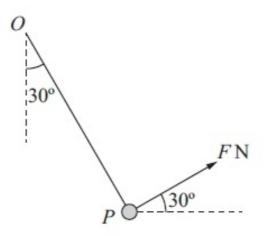


Figure 3

Find

- (i) the value of F,
- (ii) the tension in the string.

(Total 8 marks)

(8)

Question 4

A lifeboat slides down a straight ramp inclined at an angle of 15° to the horizontal. The lifeboat has mass 800 kg and the length of the ramp is 50 m. The lifeboat is released from rest at the top of the ramp and is moving with a speed of 12.6 m s⁻¹ when it reaches the end of the ramp. By modelling the lifeboat as a particle and the ramp as a rough inclined plane, find the coefficient of friction between the lifeboat and the ramp.

(Total 9 marks)

At time t seconds the velocity of a particle P is $[(4t - 5)\mathbf{i} + 3\mathbf{j}]$ m s⁻¹. When t = 0, the position vector of P is $(2\mathbf{i} + 5\mathbf{j})$ m, relative to a fixed origin O.

- (a) Find the value of *t* when the velocity of *P* is parallel to the vector **j**. (1)
- (b) Find an expression for the position vector of P at time t seconds. (4)

A second particle Q moves with constant velocity $(-2\mathbf{i} + c\mathbf{j})$ m s⁻¹. When t = 0, the position vector of Q is $(11\mathbf{i} + 2\mathbf{j})$ m. The particles P and Q collide at the point with position vector $(d\mathbf{i} + 14\mathbf{j})$ m.

- (c) Find
- (i) the value of c,
- (ii) the value of d. (5)

(Total 10 marks)

Question 6

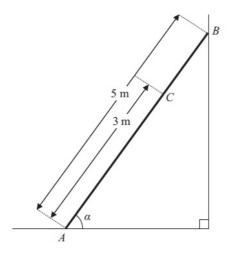


Figure 1

A ladder, of length 5 m and mass 18 kg, has one end A resting on rough horizontal ground and its other end B resting against a smooth vertical wall. The ladder lies in a vertical plane perpendicular to the wall

and makes an angle a with the horizontal ground, where $\tan a = 3$, as shown in Figure 1. The coefficient of friction between the ladder and the ground is μ . A woman of mass 60 kg stands on the ladder at the point C, where AC = 3 m. The ladder is on the point of slipping. The ladder is modelled as a uniform rod and the woman as a particle.

Find the value of μ . (9)

(Total 9 marks)

[In this question,iandjare horizontal unit vectors due east and due north respectively and position vectors are given with respect to a fixed origin.]

A ship sets sail at 9 am from a port P and moves with constant velocity. The position vector of P is $(4\mathbf{i} - 8\mathbf{j})$ km. At 9.30 am the ship is at the point with position vector $(\mathbf{i} - 4\mathbf{j})$ km.

- (a) Find the speed of the ship in km h^{-1} . (4)
- (b) Show that the position vector \mathbf{r} km of the ship, t hours after 9 am, is given by $\mathbf{r} = (4 6t)\mathbf{i} + (8t 8)\mathbf{j}$. (2)

At 10 am, a passenger on the ship observes that a lighthouse L is due west of the ship. At 10.30 am, the passenger observes that L is now south-west of the ship.

(c) Find the position vector of *L*. (5)

(Total 11 marks)

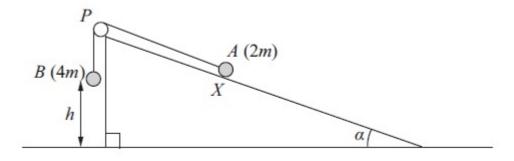


Figure 5

Figure 5 shows two particles A and B, of mass 2m and 4m respectively, connected by a light inextensible string. Initially A is held at rest on a rough inclined plane which is fixed to horizontal ground. The plane is

inclined to the horizontal at an angle a, where $\tan a = \frac{1}{4}$. The coefficient of friction between A and the

plane is $\frac{-}{4}$. The string passes over a small smooth pulley P which is fixed at the top of the plane. The part of the string from A to P is parallel to a line of greatest slope of the plane and B hangs vertically below P. The system is released from rest with the string taut, with A at the point X and with B at a height A above the ground.

For the motion until *B* hits the ground,

- (a) give a reason why the magnitudes of the accelerations of the two particles are the same, (1)
- (b) write down an equation of motion for each particle, (4)
- (c) find the acceleration of each particle. (5)

Particle *B* does not rebound when it hits the ground and *A* continues moving up the plane towards *P*. Given that *A* comes to rest at the point *Y*, without reaching *P*,

(d) find the distance XY in terms of h.

(Total 16 marks)

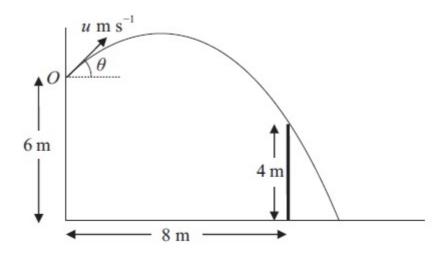


Figure 2

A ball is thrown from a point O, which is 6 m above horizontal ground. The ball is projected with speed u m s⁻¹ at an angle θ above the horizontal. There is a thin vertical post which is 4 m high and 8 m horizontally away from the vertical through O, as shown in Figure 2. The ball passes just above the top of the post 2 s after projection. The ball is modelled as a particle.

(a) Show that
$$\tan \theta = 2.2$$

(b) Find the value of
$$u$$
. (2)

The ball hits the ground *T* seconds after projection.

(c) Find the value of
$$T$$
.

Immediately before the ball hits the ground the direction of motion of the ball makes an angle *a* with the horizontal.

(d) Find
$$a$$
. (5)

(Total 15 marks)

TOTAL FOR PAPER IS 102 MARKS