Binomial Expansion - Edexcel Past Exam Questions

1. Find the first three terms, in ascending powers of x, of the binomial expansion of $(3+2 x)^{5}$, giving each term in its simplest form.

Jan 05 Q1
2. (a) Write down the first three terms, in ascending powers of x, of the binomial expansion of $(1+p x)^{12}$, where p is a non-zero constant.

Given that, in the expansion of $(1+p x)^{12}$, the coefficient of x is $(-q)$ and the coefficient of x^{2} is $11 q$,
(b) find the value of p and the value of q.
3. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(1+p x)^{9}
$$

where p is a constant.

The first 3 terms are $1,36 x$ and $q x^{2}$, where q is a constant.
(b) Find the value of p and the value of q.
4. Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(2+x)^{6}$, giving each term in its simplest form.

June 06 Q1
5. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1-2 x)^{5}$. Give each term in its simplest form.
(b) If x is small, so that x^{2} and higher powers can be ignored, show that

$$
\begin{equation*}
(1+x)(1-2 x)^{5} \approx 1-9 x . \tag{2}
\end{equation*}
$$

6. (a) Find the first four terms, in ascending powers of x, in the bionomial expansion of $(1+$ $k x)^{6}$, where k is a non-zero constant.

Given that, in this expansion, the coefficients of x and x^{2} are equal, find
(b) the value of k,
(c) the coefficient of x^{3}.
7. (a) Find the first 4 terms of the expansion of $\left(1+\frac{x}{2}\right)^{10}$ in ascending powers of x, giving each term in its simplest form.
(b) Use your expansion to estimate the value of $(1.005)^{10}$, giving your answer to 5 decimal places.

Jan 08 Q3
8. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1+a x)^{10}$, where a is a non-zero constant. Give each term in its simplest form.

Given that, in this expansion, the coefficient of x^{3} is double the coefficient of x^{2},
(b) find the value of a.

June 08 Q3
9. Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(3-2 x)^{5}$, giving each term in its simplest form.

Jan 09 Q1
10. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(2+k x)^{7}
$$

where k is a constant. Give each term in its simplest form.

Given that the coefficient of x^{2} is 6 times the coefficient of x,
(b) find the value of k.
11. Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
\begin{equation*}
(3-x)^{6} \tag{4}
\end{equation*}
$$

and simplify each term.
Jan 10 Q1
12. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1+a x)^{7}$, where a is a constant. Give each term in its simplest form.

Given that the coefficient of x^{2} in this expansion is 525,
(b) find the possible values of a.

June 10 Q4
13. Given that $\binom{40}{4}=\frac{40!}{4!b!}$,
(a) write down the value of b.

In the binomial expansion of $(1+x)^{40}$, the coefficients of x^{4} and x^{5} are p and q respectively.
(b) Find the value of $\frac{q}{p}$.

Jan 11 Q5
14. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(3+b x)^{5}
$$

where b is a non-zero constant. Give each term in its simplest form.

Given that, in this expansion, the coefficient of x^{2} is twice the coefficient of x,
(b) find the value of b.

