

Circles - Edexcel Past Exam Questions

1.	The circle <i>C</i> , with centre at the point <i>A</i> , has equation $x^2 + y^2 - 10x + 9 = 0$.		
	Find		
	(a) the coordinates of A ,	(2)	
	(b) the radius of C ,	(2)	
	(c) the coordinates of the points at which C crosses the x-axis.	(2)	
	Given that the line <i>l</i> with gradient $\frac{7}{2}$ is a tangent to <i>C</i> , and that <i>l</i> touches <i>C</i> at the point <i>T</i> ,		
	(d) find an equation of the line which passes through A and T .	(3)	
		June 05 Q8	
2.	The points A and B have coordinates $(5, -1)$ and $(13, 11)$ respectively.		
	(<i>a</i>) Find the coordinates of the mid-point of <i>AB</i> .	(2)	
	Given that AB is a diameter of the circle C ,		
	(<i>b</i>) find an equation for <i>C</i> .	(4)	
		Jan 05 Q2	

In Figure 1, A(4, 0) and B(3, 5) are the end points of a diameter of the circle C.

Find

	Jan 06 O3
(c) an equation for the circle C .	(3)
(b) the coordinates of the midpoint P of AB ,	(2)
(a) the exact length of AB ,	(2)

Figure 1

The line y = 3x - 4 is a tangent to the circle *C*, touching *C* at the point P(2, 2), as shown in Figure 1. The point *Q* is the centre of *C*. (*a*) Find an equation of the straight line through *P* and *Q*. (3)

Given that Q lies on the line y = 1,(1)(b) show that the x-coordinate of Q is 5,(1)(c) find an equation for C.(4)June 06 Q7

5. The line joining points (-1, 4) and (3, 6) is a diameter of the circle C.
Find an equation for C.
Jan 07 Q3

The points A and B lie on a circle with centre P, as shown in Figure 3. The point A has coordinates (1, -2) and the mid-point M of AB has coordinates (3, 1). The line *l* passes through the points *M* and *P*.

<i>(a)</i>	Find an equation for <i>l</i> .	(4)
------------	---------------------------------	-----

Given that the *x*-coordinate of *P* is 6,

(<i>b</i>)	use your answer to part (a) to show that the y-coordinate of P is -1 ,	(1)
(<i>c</i>)	find an equation for the circle.	(4)

- The circle *C* has centre (3, 1) and passes through the point *P*(8, 3). (*a*) Find an equation for *C*.
 - (b) Find an equation for the tangent to C at P, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

(5)

(4)

June 08 Q5

June 07 Q7

7.

(5)

(2)

The points P(-3, 2), Q(9, 10) and R(a, 4) lie on the circle *C*, as shown in Figure 2. Given that *PR* is a diameter of *C*,

		Jan 09 Q5
(<i>b</i>)	find an equation for <i>C</i> .	(5)
(<i>a</i>)	show that $a = 13$,	(3)

9. The circle *C* has equation

$$x^2 + y^2 - 6x + 4y = 12$$

(*a*) Find the centre and the radius of *C*.

The point P(-1, 1) and the point Q(7, -5) both lie on C.

(b) Show that PQ is a diameter of C.

The point *R* lies on the positive *y*-axis and the angle $PRQ = 90^{\circ}$.

(<i>c</i>)	Find the coordinates of <i>R</i> .	(4)
		June 09 Q6

8.

10.

Figure 3

Figure 3 shows a sketch of the circle C with centre N and equation

$$(x-2)^2 + (y+1)^2 = \frac{169}{4}.$$

(a) Write down the coordinates of N.

(b) Find the radius of C.

The chord AB of C is parallel to the x-axis, lies below the x-axis and is of length 12 units as shown in Figure 3.

- (c) Find the coordinates of A and the coordinates of B. (5)
- (d) Show that angle $ANB = 134.8^\circ$, to the nearest 0.1 of a degree. (2)

The tangents to *C* at the points *A* and *B* meet at the point *P*.

(e) Find the length AP, giving your answer to 3 significant figures (2)

Jan 10 Q8

www.naikermaths.com

(2) (1)

11.	The circle <i>C</i> has centre $A(2,1)$ and passes through the point $B(10, 7)$.	
	(<i>a</i>) Find an equation for <i>C</i> .	(4)
	The line l_1 is the tangent to <i>C</i> at the point <i>B</i> .	
	(b) Find an equation for l_1 .	(4)
	The line l_2 is parallel to l_1 and passes through the mid-point of <i>AB</i> .	
	Given that l_2 intersects C at the points P and Q,	
	(c) find the length of PQ , giving your answer in its simplest surd form.	(3)
		June 10 Q10
12.	The points A and B have coordinates $(-2, 11)$ and $(8, 1)$ respectively.	

Given that *AB* is a diameter of the circle *C*,

(<i>a</i>)	show that the centre of C has coordinates $(3, 6)$,	(1)
(<i>b</i>)	find an equation for C.	(4)
(<i>c</i>)	Verify that the point $(10, 7)$ lies on <i>C</i> .	(1)
()		(1)

(d) Find an equation of the tangent to C at the point (10, 7), giving your answer in the form y = mx + c, where m and c are constants. (4)

Jan 11 Q9

13. The circle *C* has equation

$$x^2 + y^2 + 4x - 2y - 11 = 0.$$

Find

<i>(a)</i>	the coordinates of the centre of <i>C</i> ,	(2)
------------	---	-----

(b) the radius of C,

(c) the coordinates of the points where C crosses the y-axis, giving your answers as simplified surds.(4)

(2)