Circles - Edexcel Past Exam Questions

1. The circle C, with centre at the point A, has equation $x^{2}+y^{2}-10 x+9=0$.

Find
(a) the coordinates of A,
(b) the radius of C,
(c) the coordinates of the points at which C crosses the x-axis.

Given that the line l with gradient $\frac{7}{2}$ is a tangent to C, and that l touches C at the point T,
(d) find an equation of the line which passes through A and T.

June 05 Q8
2. The points A and B have coordinates $(5,-1)$ and $(13,11)$ respectively.
(a) Find the coordinates of the mid-point of $A B$.

Given that $A B$ is a diameter of the circle C,
(b) find an equation for C.
3.

Figure 1

In Figure $1, A(4,0)$ and $B(3,5)$ are the end points of a diameter of the circle C.
Find
(a) the exact length of $A B$,
(b) the coordinates of the midpoint P of $A B$,
(c) an equation for the circle C.
4.

Figure 1

The line $y=3 x-4$ is a tangent to the circle C, touching C at the point $\mathrm{P}(2,2)$, as shown in Figure 1 . The point Q is the centre of C.
(a) Find an equation of the straight line through P and Q.

Given that Q lies on the line $y=1$,
(b) show that the x-coordinate of Q is 5 ,
(c) find an equation for C.

June 06 Q7

5. The line joining points $(-1,4)$ and $(3,6)$ is a diameter of the circle C.

Find an equation for C.
Jan 07 Q3
6.

Figure 3
The points A and B lie on a circle with centre P, as shown in Figure 3.
The point A has coordinates $(1,-2)$ and the mid-point M of $A B$ has coordinates $(3,1)$. The line l passes through the points M and P.
(a) Find an equation for l.

Given that the x-coordinate of P is 6 ,
(b) use your answer to part (a) to show that the y-coordinate of P is -1 ,
(c) find an equation for the circle.
7. The circle C has centre $(3,1)$ and passes through the point $P(8,3)$.
(a) Find an equation for C.
(b) Find an equation for the tangent to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
8.

The points $P(-3,2), Q(9,10)$ and $R(a, 4)$ lie on the circle C, as shown in Figure 2.
Given that $P R$ is a diameter of C,
(a) show that $a=13$,
(b) find an equation for C.
9. The circle C has equation

$$
x^{2}+y^{2}-6 x+4 y=12
$$

(a) Find the centre and the radius of C.

The point $P(-1,1)$ and the point $Q(7,-5)$ both lie on C.
(b) Show that $P Q$ is a diameter of C.

The point R lies on the positive y-axis and the angle $P R Q=90^{\circ}$.
(c) Find the coordinates of R.
10.

Figure 3
Figure 3 shows a sketch of the circle C with centre N and equation

$$
(x-2)^{2}+(y+1)^{2}=\frac{169}{4}
$$

(a) Write down the coordinates of N.
(b) Find the radius of C.

The chord $A B$ of C is parallel to the x-axis, lies below the x-axis and is of length 12 units as shown in Figure 3.
(c) Find the coordinates of A and the coordinates of B.
(d) Show that angle $A N B=134.8^{\circ}$, to the nearest 0.1 of a degree.

The tangents to C at the points A and B meet at the point P.
(e) Find the length $A P$, giving your answer to 3 significant figures
11. The circle C has centre $A(2,1)$ and passes through the point $B(10,7)$.
(a) Find an equation for C.

The line l_{1} is the tangent to C at the point B.
(b) Find an equation for l_{1}.

The line l_{2} is parallel to l_{1} and passes through the mid-point of $A B$.

Given that l_{2} intersects C at the points P and Q,
(c) find the length of $P Q$, giving your answer in its simplest surd form.

June 10 Q10
12. The points A and B have coordinates $(-2,11)$ and $(8,1)$ respectively.

Given that $A B$ is a diameter of the circle C,
(a) show that the centre of C has coordinates $(3,6)$,
(b) find an equation for C.
(c) Verify that the point $(10,7)$ lies on C.
(d) Find an equation of the tangent to C at the point (10, 7), giving your answer in the form $y=m x+c$, where m and c are constants.

Jan 11 Q9
13. The circle C has equation

$$
x^{2}+y^{2}+4 x-2 y-11=0 .
$$

Find
(a) the coordinates of the centre of C,
(b) the radius of C,
(c) the coordinates of the points where C crosses the y-axis, giving your answers as simplified surds.

