Differentiation, Tangents \& Normal - Edexcel Past Exam Questions

1. Given that $y=5 x^{3}+7 x+3$, find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
2. The curve C has equation $y=4 x^{2}+\frac{5-x}{x}, x \neq 0$. The point P on C has x-coordinate 1 .
(a) Show that the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at P is 3 .
(b) Find an equation of the tangent to C at P.

This tangent meets the x-axis at the point $(k, 0)$.
(c) Find the value of k.
3. Given that $y=6 x-\frac{4}{x^{2}}, x \neq 0$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$

June 05 Q2
4. The curve C has equation $y=\frac{1}{3} x^{3}-4 x^{2}+8 x+3$.

The point P has coordinates $(3,0)$.
(a) Show that P lies on C.
(b) Find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$, where m and c are constants.

Another point Q also lies on C. The tangent to C at Q is parallel to the tangent to C at P.
(c) Find the coordinates of Q.
5. Given that $y=2 x^{2}-\frac{6}{x^{3}}, x \neq 0$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
\qquad
Jan 06 Q4
6. Differentiate with respect to x
(a) $x^{4}+6 \sqrt{ } x$,
(b) $\frac{(x+4)^{2}}{x}$.
7.

Figure 2 shows part of the curve C with equation

$$
y=(x-1)\left(x^{2}-4\right) .
$$

The curve cuts the x-axis at the points $P,(1,0)$ and Q, as shown in Figure 2.
(a) Write down the x-coordinate of P and the x-coordinate of Q.
(b) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-2 x-4$.
(c) Show that $y=x+7$ is an equation of the tangent to C at the point $(-1,6)$.

The tangent to C at the point R is parallel to the tangent at the point $(-1,6)$.
(d) Find the exact coordinates of R.
8. Given that $y=4 x^{3}-1+2 x^{\frac{1}{2}}, x>0$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
9. The curve C has equation $y=4 x+3 x^{\frac{3}{2}}-2 x^{2}, \quad x>0$.
(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Show that the point $P(4,8)$ lies on C.
(c) Show that an equation of the normal to C at the point P is

$$
\begin{equation*}
3 y=x+20 \tag{4}
\end{equation*}
$$

The normal to C at P cuts the x-axis at the point Q.
(d) Find the length $P Q$, giving your answer in a simplified surd form.
10. Given that $y=3 x^{2}+4 \sqrt{ } x, x>0$, find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$,

June 07 Q3
11. The curve C has equation $y=x^{2}(x-6)+\frac{4}{x}, x>0$.

The points P and Q lie on C and have x-coordinates 1 and 2 respectively.
(a) Show that the length of $P Q$ is $\sqrt{ } 170$.
(b) Show that the tangents to C at P and Q are parallel.
(c) Find an equation for the normal to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
12. (a) Write $\frac{2 \sqrt{ } x+3}{x}$ in the form $2 x^{p}+3 x^{q}$, where p and q are constants.

Given that $y=5 x-7+\frac{2 \sqrt{ } x+3}{x}, x>0$,
(b) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, simplifying the coefficient of each term.

Jan 08 Q5
13. The curve C has equation

$$
y=(x+3)(x-1)^{2} .
$$

(a) Sketch C, showing clearly the coordinates of the points where the curve meets the coordinate axes.
(b) Show that the equation of C can be written in the form

$$
\begin{equation*}
y=x^{3}+x^{2}-5 x+k \tag{2}
\end{equation*}
$$

where k is a positive integer, and state the value of k.
There are two points on C where the gradient of the tangent to C is equal to 3 .
(c) Find the x-coordinates of these two points.

Jan 08 Q10
14. $\mathrm{f}(x)=3 x+x^{3}, \quad x>0$.
(a) Differentiate to find $\mathrm{f}^{\prime}(x)$.

Given that $\mathrm{f}^{\prime}(x)=15$,
(b) find the value of x.
15. The curve C has equation $y=k x^{3}-x^{2}+x-5$, where k is a constant.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

The point A with x-coordinate $-\frac{1}{2}$ lies on C. The tangent to C at A is parallel to the line with equation $2 y-7 x+1=0$.

Find
(b) the value of k,
(c) the value of the y-coordinate of A.
16. Given that $\frac{2 x^{2}-x^{\frac{3}{2}}}{\sqrt{ } x}$ can be written in the form $2 x^{p}-x^{q}$,
(a) write down the value of p and the value of q.

Given that $y=5 x^{4}-3+\frac{2 x^{2}-x^{\frac{3}{2}}}{\sqrt{ } x}$,
(b) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, simplifying the coefficient of each term.

Jan 09 Q6
17. The curve C has equation

$$
y=9-4 x-\frac{8}{x}, \quad x>0 .
$$

The point P on C has x-coordinate equal to 2 .
(a) Show that the equation of the tangent to C at the point P is $y=1-2 x$.
(b) Find an equation of the normal to C at the point P.

The tangent at P meets the x-axis at A and the normal at P meets the x-axis at B.
(c) Find the area of the triangle $A P B$.
18. Given that $y=2 x^{3}+\frac{3}{x^{2}}, x \neq 0$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
19. $\mathrm{f}(x)=\frac{(3-4 \sqrt{ } x)^{2}}{\sqrt{ } x}, x>0$.
(a) Show that $\mathrm{f}(x)=9 x^{-\frac{1}{2}}+A x^{\frac{1}{2}}+B$, where A and B are constants to be found.
(b) Find $\mathrm{f}^{\prime}(x)$.
(c) Evaluate $\mathrm{f}^{\prime}(9)$.

June 09 Q9
20. The curve C has equation

$$
y=x^{3}-2 x^{2}-x+9, \quad x>0 .
$$

The point P has coordinates $(2,7)$.
(a) Show that P lies on C.
(b) Find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$, where m and c are constants.

The point Q also lies on C.
Given that the tangent to C at Q is perpendicular to the tangent to C at P,
(c) show that the x-coordinate of Q is $\frac{1}{3}(2+\sqrt{ } 6)$.

June 09 Q11
21. Given that $y=x^{4}+x^{\frac{1}{3}}+3$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Jan 10 Q1
22. The curve C has equation

$$
y=\frac{(x+3)(x-8)}{x}, x>0 .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in its simplest form.
(b) Find an equation of the tangent to C at the point where $x=2$.
23. Given that

$$
\begin{equation*}
y=8 x^{3}-4 \sqrt{ } x+\frac{3 x^{2}+2}{x}, \quad x>0 \tag{6}
\end{equation*}
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
June 10 Q7
24. The curve C has equation

$$
\begin{equation*}
y=\frac{1}{2} x^{3}-9 x^{\frac{3}{2}}+\frac{8}{x}+30, \quad x>0 . \tag{4}
\end{equation*}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Show that the point $P(4,-8)$ lies on C.
(c) Find an equation of the normal to C at the point P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
25. Given that $y=2 x^{5}+7+\frac{1}{x^{3}}, x \neq 0$, find, in their simplest form, $\frac{\mathrm{d} y}{\mathrm{~d} x}$
26. The curve C has equation

$$
y=(x+1)(x+3)^{2} .
$$

(a) Sketch C, showing the coordinates of the points at which C meets the axes.
(b) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+14 x+15$.

The point A, with x-coordinate -5 , lies on C.
(c) Find the equation of the tangent to C at A, giving your answer in the form $y=m x+c$, where m and c are constants.

Another point B also lies on C. The tangents to C at A and B are parallel.
(d) Find the x-coordinate of B.

