Integration - Edexcel Past Exam Questions

1. Find $\int\left(1+3 \sqrt{ } x-\frac{1}{x^{2}}\right) d x$.

Jan 05 Q2
2. The gradient of the curve C is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(3 x-1)^{2} .
$$

The point $P(1,4)$ lies on C.
(a) Find an equation of the normal to C at P.
(b) Find an equation for the curve C in the form $y=\mathrm{f}(x)$.
(c) Using $\frac{\mathrm{d} y}{\mathrm{~d} x}=(3 x-1)^{2}$, show that there is no point on C at which the tangent is parallel to the line $y=1-2 x$.

Jan 05 Q9
3. Given that $y=6 x-\frac{4}{x^{2}}, x \neq 0$, find $\int y \mathrm{~d} x$.
4. Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(3-\sqrt{ } x)^{2}}{\sqrt{ } x}, x>0$, and that $y=\frac{2}{3}$ at $x=1$,
find y in terms of x.
June 05 Q7
5. Given that $y=2 x^{2}-\frac{6}{x^{3}}, x \neq 0$, find $\int y \mathrm{~d} x$.
6. The curve with equation $y=\mathrm{f}(x)$ passes through the point $(1,6)$. Given that

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=3+\frac{5 x^{2}+2}{x^{\frac{1}{2}}}, x>0 \tag{7}
\end{equation*}
$$

find $\mathrm{f}(x)$ and simplify your answer.
Jan 06 Q8
7. Find $\int\left(6 x^{2}+2+x^{-\frac{1}{2}}\right) \mathrm{d} x$, giving each term in its simplest form.

June 06 Q1
8. The curve C with equation $y=\mathrm{f}(x), x \neq 0$, passes through the point $\left(3,7 \frac{1}{2}\right)$.

Given that $\mathrm{f}^{\prime}(x)=2 x+\frac{3}{x^{2}}$,
(a) find $\mathrm{f}(x)$.
(b) Verify that $\mathrm{f}(-2)=5$.
(c) Find an equation for the tangent to C at the point $(-2,5)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

June 06 Q10
9. (a) Show that $(4+3 \sqrt{ } x)^{2}$ can be written as $16+k \sqrt{ } x+9 x$, where k is a constant to be found.
(b) Find $\int(4+3 \sqrt{ } x)^{2} d x$.

Jan 07 Q6
10. The curve C has equation $y=\mathrm{f}(x), x \neq 0$, and the point $P(2,1)$ lies on C. Given that

$$
\mathrm{f}^{\prime}(x)=3 x^{2}-6-\frac{8}{x^{2}},
$$

(a) find $\mathrm{f}(x)$.
(b) Find an equation for the tangent to C at the point P, giving your answer in the form $y=m x+c$, where m and c are integers.

Jan 07 Q7
11. Given that $y=3 x^{2}+4 \sqrt{ } x, x>0$, find
(c) $\int y \mathrm{~d} x$.
12. The curve C with equation $y=\mathrm{f}(x)$ passes through the point $(5,65)$.

Given that $\mathrm{f}^{\prime}(x)=6 x^{2}-10 x-12$,
(a) use integration to find $\mathrm{f}(x)$.
(b) Hence show that $\mathrm{f}(x)=x(2 x+3)(x-4)$.
(c) Sketch C, showing the coordinates of the points where C crosses the x-axis.

June 07 Q9
13. Find $\int\left(3 x^{2}+4 x^{5}-7\right) d x$.

Jan 08 Q1
14. The curve C has equation $y=\mathrm{f}(x), x>0$, and $\mathrm{f}^{\prime}(x)=4 x-6 \sqrt{ } x+\frac{8}{x^{2}}$.

Given that the point $P(4,1)$ lies on C,
(a) find $\mathrm{f}(x)$ and simplify your answer.
(b) Find an equation of the normal to C at the point $P(4,1)$.
15. Find $\int\left(2+5 x^{2}\right) d x$.
16. The gradient of a curve C is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(x^{2}+3\right)^{2}}{x^{2}}, x \neq 0$.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+6+9 x^{-2}$.

The point $(3,20)$ lies on C.
(b) Find an equation for the curve C in the form $y=\mathrm{f}(x)$.
17. Find $\int\left(12 x^{5}-8 x^{3}+3\right) \mathrm{d} x$, giving each term in its simplest form.
18. A curve has equation $y=\mathrm{f}(x)$ and passes through the point $(4,22)$.

Given that

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=3 x^{2}-3 x^{\frac{1}{2}}-7 \tag{5}
\end{equation*}
$$

use integration to find $\mathrm{f}(x)$, giving each term in its simplest form.
Jan 09 Q4
19. Given that $y=2 x^{3}+\frac{3}{x^{2}}, x \neq 0$, find

$$
\begin{equation*}
\int y \mathrm{~d} x \text {, simplifying each term. } \tag{3}
\end{equation*}
$$

June 09 Q3
20.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{-\frac{1}{2}}+x \sqrt{ } x, \quad x>0
$$

Given that $y=35$ at $x=4$, find y in terms of x, giving each term in its simplest form.
21. Find

$$
\int\left(8 x^{3}+6 x^{\frac{1}{2}}-5\right) \mathrm{d} x
$$

giving each term in its simplest form.
22. The curve C has equation $y=\mathrm{f}(x), \quad x>0$, where

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x-\frac{5}{\sqrt{ } x}-2 .
$$

Given that the point $P(4,5)$ lies on C, find
(a) $\mathrm{f}(x)$,
(b) an equation of the tangent to C at the point P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

June 10 Q11
23. Find

$$
\int\left(12 x^{5}-3 x^{2}+4 x^{\frac{1}{3}}\right) \mathrm{d} x
$$

giving each term in its simplest form.
24. The curve with equation $y=\mathrm{f}(x)$ passes through the point $(-1,0)$.

Given that

$$
\begin{equation*}
f^{\prime}(x)=12 x^{2}-8 x+1 \tag{5}
\end{equation*}
$$

find $\mathrm{f}(x)$.
Jan 11 Q7
25. Given that $y=2 x^{5}+7+\frac{1}{x^{3}}, x \neq 0$, find, in their simplest form, $\int y \mathrm{~d} x$.

June 11 Q2
26. Given that $\frac{6 x+3 x^{\frac{5}{2}}}{\sqrt{ } x}$ can be written in the form $6 x^{p}+3 x^{q}$,
(a) write down the value of p and the value of q.

Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x+3 x^{\frac{5}{2}}}{\sqrt{ } x}$ and that $y=90$ when $x=4$,
(b) find y in terms of x, simplifying the coefficient of each term.

