

Constant Acceleration : Vertical Motion - Edexcel Past Exam Questions

l .	A stone is thrown vertically upwards with speed 16 m s ⁻¹ from a point h metres above the ground. The stone hits the ground 4 s later. Find
	(a) the value of h ,
	(b) the speed of the stone as it hits the ground. (3) Jan 06 Q1
2.	A ball is projected vertically upwards with speed 21 m s^{-1} from a point A , which is 1.5 m above the ground. After projection, the ball moves freely under gravity until it reaches the ground. Modelling the ball as a particle, find
	(a) the greatest height above A reached by the ball, (3)
	(b) the speed of the ball as it reaches the ground, (3)
	(c) the time between the instant when the ball is projected from A and the instant when the ball reaches the ground. (4) Jan 07 Q5
3.	A firework rocket starts from rest at ground level and moves vertically. In the first 3 s of its motion, the rocket rises 27 m. The rocket is modelled as a particle moving with constant acceleration a m s ⁻² . Find
	(a) the value of a ,
	(b) the speed of the rocket 3 s after it has left the ground. (2)
	After 3 s, the rocket burns out. The motion of the rocket is now modelled as that of a particle moving freely under gravity.
	(c) Find the height of the rocket above the ground 5 s after it has left the ground. Jan 08 Q2
l.	At time $t = 0$, a particle is projected vertically upwards with speed u m s ⁻¹ from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s ⁻¹ . Find
	(a) the value of u , (3)
	(b) the value of T June 08 O2

5.	A ball is projected vertically upwards with a speed of 14.7 m s ⁻¹ from a point which is 49 m
	above horizontal ground. Modelling the ball as a particle moving freely under gravity, find

- (a) the greatest height, above the ground, reached by the ball,
- (b) the speed with which the ball first strikes the ground, (3)
- (c) the total time from when the ball is projected to when it first strikes the ground. (3)

June 10 Q6

- 6. A ball is thrown vertically upwards with speed u m s⁻¹ from a point P at height h metres above the ground. The ball hits the ground 0.75 s later. The speed of the ball immediately before it hits the ground is 6.45 m s⁻¹. The ball is modelled as a particle.
 - (a) Show that u = 0.9.
 - (b) Find the height above P to which the ball rises before it starts to fall towards the ground again. (2)
 - (c) Find the value of h. (3)

Jan 11 Q2