1 Expand each of the following, simplifying the coefficient in each term.

a
$$(1+x)^4$$

b
$$(1-x)^5$$

$$(1+4x)^3$$

d
$$(1-2v)^3$$

e
$$(1 + \frac{1}{2}x)^4$$

b
$$(1-x)^5$$
 c $(1+4x)^3$ **f** $(1+\frac{1}{3}y)^3$ **g** $(1+x^2)^5$

$$\mathbf{g} (1+x^2)^5$$

h
$$(1-\frac{3}{2}x)^4$$

2 Expand each of the following, simplifying the coefficient in each term.

a
$$(x + y)^3$$

b
$$(a-b)^5$$

$$c (x + 2y)^4$$

d
$$(2+y)^3$$

e
$$(3-x)^3$$

f
$$(5+2x)^4$$

$$\mathbf{g} (3-4y)^5$$

h
$$(3 + \frac{1}{2}x)^4$$

3 Find the first four terms in the expansion in ascending powers of x of

a
$$(1+x)^{10}$$

b
$$(1-x)^6$$

c
$$(1+2x)^8$$

c
$$(1+2x)^8$$
 d $(1-\frac{1}{2}x)^7$

$$e (1+x^3)^6$$

f
$$(2+x)^9$$

$$\mathbf{g} (3-x)^7$$

h
$$(2+5x)^{10}$$

Find the coefficient indicated in the following expansions.

a
$$(1+x)^{20}$$
, coefficient of x^3

b
$$(1-x)^{14}$$
, coefficient of x^4

c
$$(1+4x)^9$$
, coefficient of x^2

d
$$(1-3y)^{14}$$
, coefficient of y^3

e
$$(1-\frac{1}{3}x)^{12}$$
, coefficient of x^4

f
$$(1-\frac{1}{2}x)^{16}$$
, coefficient of x^5

$$\mathbf{g} (1 + \frac{2}{5}x)^{15}$$
, coefficient of x^2

h
$$(1+y^2)^8$$
, coefficient of y^6

5 Express each of the following in the required form where a and b are integers.

a
$$(1+\sqrt{5})^3$$
 in the form $a+b\sqrt{5}$

a
$$(1 + \sqrt{5})^3$$
 in the form $a + b\sqrt{5}$ **b** $(1 - \sqrt{3})^4$ in the form $a + b\sqrt{3}$

c
$$(2 + \sqrt{2})^3$$
 in the form $a + b\sqrt{2}$

c
$$(2 + \sqrt{2})^3$$
 in the form $a + b\sqrt{2}$ **d** $(1 + 2\sqrt{3})^4$ in the form $a + b\sqrt{3}$

a Expand $(1+x)^6$ in ascending powers of x up to and including the term in x^3 , simplifying 6

b By substituting a suitable value of x into your answer for part **a**, obtain an estimate for

ii
$$0.99^6$$

giving your answers to 4 decimal places.

a Expand $(1+2y)^8$ in ascending powers of y up to and including the term in y^3 , simplifying 7

b By substituting a suitable value of y into your answer for part **a**, obtain an estimate for

$$i = 0.98^8$$

giving your answers to 4 decimal places.

8 Expand and simplify

a
$$(1+x)^4+(1-x)^4$$

b
$$(1 - \frac{1}{3}x)^3 - (1 + \frac{1}{3}x)^3$$

The coefficient of x^2 in the expansion of $(1 + ax)^4$ in ascending powers of x is 24, where a is 9 a constant and a < 0. Find

a the value of a.

b the value of the coefficient of x^3 in the expansion.

1 Expand

a
$$(1+3x)^4$$

b
$$(2-x)^5$$

a
$$(1+3x)^4$$
 b $(2-x)^5$ **c** $(3+10x^2)^3$ **d** $(a+2b)^5$

d
$$(a+2b)^5$$

$$(x^2-y)^3$$

f
$$(5 + \frac{1}{2}x)^4$$

$$g (x + \frac{1}{x})^4$$

e
$$(x^2 - y)^3$$
 f $(5 + \frac{1}{2}x)^4$ **g** $(x + \frac{1}{x})^4$ **h** $(t - \frac{2}{t^2})^3$

2 Find the first four terms in the expansion in ascending powers of x of

a
$$(1+3x)^6$$

b
$$(1 - \frac{1}{4}x)^8$$

c
$$(5-x)^7$$

d
$$(3+2x^2)^{10}$$

3 Find the coefficient indicated in the following expansions

a
$$(1+x)^{15}$$
, coefficient of x^3

b
$$(1-2x)^{12}$$
, coefficient of x^4

c
$$(3+x)^7$$

c
$$(3+x)^7$$
, coefficient of x^2

d
$$(2-v)^{10}$$
.

d
$$(2-y)^{10}$$
, coefficient of y^5

$$e (2+t^3)^8$$

e
$$(2+t^3)^8$$
, coefficient of t^{15}

f
$$(1-\frac{1}{x})^9$$

$$\mathbf{f} (1 - \frac{1}{r})^9$$
, coefficient of x^{-3}

a Express $(\sqrt{2} - \sqrt{5})^4$ in the form $a + b\sqrt{10}$, where $a, b \in \mathbb{Z}$. 4

b Express $(\sqrt{2} + \frac{1}{\sqrt{3}})^3$ in the form $a\sqrt{2} + b\sqrt{3}$, where $a, b \in \mathbb{Q}$.

c Express $(1 + \sqrt{5})^3 - (1 - \sqrt{5})^3$ in the form $a\sqrt{5}$, where $a \in \mathbb{Z}$.

a Expand $(1 + \frac{x}{2})^{10}$ in ascending powers of x up to and including the term in x^3 , simplifying 5 each coefficient.

b By substituting a suitable value of x into your answer for part **a**, obtain an estimate for

giving your answers to 5 decimal places.

a Expand $(3 + x)^8$ in ascending powers of x up to and including the term in x^3 , simplifying 6 each coefficient.

b By substituting a suitable value of x into your answer for part **a**, obtain an estimate for

giving your answers to 7 significant figures.

7 Expand and simplify

a
$$(1+10x)^4+(1-10x)^4$$

b
$$(2-\frac{1}{3}x)^3-(2+\frac{1}{3}x)^3$$

c
$$(1+4y)(1+y)^3$$

d
$$(1-x)(1+\frac{1}{x})^3$$

Expand each of the following in ascending powers of x up to and including the term in x^3 . 8

a
$$(1+x^2)(1-3x)^{10}$$

b
$$(1-2x)(1+x)^8$$

c
$$(1+x+x^2)(1-x)^6$$

d
$$(1+3x-x^2)(1+2x)^7$$

9 Find the term independent of y in each of the following expansions.

a
$$(y + \frac{1}{y})^8$$

b
$$(2y - \frac{1}{2y})^{12}$$

$$c (\frac{1}{y} + y^2)^6$$

b
$$(2y - \frac{1}{2y})^{12}$$
 c $(\frac{1}{y} + y^2)^6$ **d** $(3y - \frac{1}{y^2})^9$

- 10 The coefficient of x^2 in the binomial expansion of $(1 + \frac{2}{5}x)^n$, where n is a positive integer, is 1.6
 - **a** Find the value of n.
 - **b** Use your value of n to find the coefficient of x^4 in the expansion.
- Given that $y_1 = (1 2x)(1 + x)^{10}$ and $y_2 = ax^2 + bx + c$ and that when x is small, y_2 can be used as an approximation for y_1 ,
 - **a** find the values of the constants a, b and c,
 - **b** find the percentage error in using y_2 as an approximation for y_1 when x = 0.2
- In the binomial expansion of $(1 + px)^q$, where p and q are constants and q is a positive integer, the coefficient of x is -12 and the coefficient of x^2 is 60.

Find

- **a** the value of p and the value of q,
- **b** the value of the coefficient of x^3 in the expansion.
- 13 a Expand $(3 \frac{x}{3})^{12}$ as a binomial series in ascending powers of x up to and including the term in x^3 , giving each coefficient as an integer.
 - **b** Use your series expansion with a suitable value of x to obtain an estimate for 2.998¹², giving your answer to 2 decimal places.
- 14 a Expand $(1-x)^5$ as a binomial series in ascending powers of x.
 - **b** Express $(\sqrt{3} + 1)(\sqrt{3} 2)$ in the form $A + B\sqrt{3}$, where $A, B \in \mathbb{Z}$.
 - **c** Hence express each of the following in the form $C + D\sqrt{3}$, where $C, D \in \mathbb{Z}$.
 - i $(\sqrt{3} + 1)^5 (\sqrt{3} 2)^5$
 - ii $(\sqrt{3} + 1)^6 (\sqrt{3} 2)^5$
- 15 **a** Expand $(1 + \frac{x}{2})^9$ in ascending powers of x up to and including the term in x^4 .

Hence, or otherwise, find

- **b** the coefficient of x^3 in the expansion of $(1 + \frac{x}{2})^9 (1 \frac{x}{2})^9$,
- c the coefficient of x^4 in the expansion of $(1+2x)(1+\frac{x}{2})^9$.
- 16 The term independent of x in the expansion of $(x^3 + \frac{a}{x^2})^5$ is -80.

Find the value of the constant a.

- In the binomial expansion of $(1 + \frac{x}{k})^n$, where k is a non-zero constant, n is an integer and n > 1, the coefficient of x^2 is three times the coefficient of x^3 .
 - a Show that k = n 2.

Given also that n = 7,

b expand $(1 + \frac{x}{k})^n$ in ascending powers of x up to and including the term in x^4 , giving each coefficient as a fraction in its simplest form.