Forces as Vectors - Edexcel Past Exam Questions

*1. A particle P of mass 0.4 kg moves under the action of a single constant force \mathbf{F} newtons. The acceleration of P is $(6 \mathbf{i}+8 \mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$. Find
(a) the angle between the acceleration and \mathbf{i},
(b) the magnitude of \mathbf{F}.
2. Two forces, $(4 \mathbf{i}-5 \mathbf{j}) \mathrm{N}$ and $(p \mathbf{i}+q \mathbf{j}) \mathrm{N}$, act on a particle P of mass $m \mathrm{~kg}$. The resultant of the two forces is \mathbf{R}. Given that \mathbf{R} acts in a direction which is parallel to the vector $(\mathbf{i}-2 \mathbf{j})$,
(a) find the angle between \mathbf{R} and the vector \mathbf{j},
(b) show that $2 p+q+3=0$.

Given also that $q=1$ and that P moves with an acceleration of magnitude $8 \sqrt{5} \mathrm{~m} \mathrm{~s}^{-2}$,
(c) find the value of m.

Jan 09 Q6
3. A particle is acted upon by two forces \mathbf{F}_{1} and \mathbf{F}_{2}, given by $\mathbf{F}_{1}=(\mathbf{i}-3 \mathbf{j}) \mathrm{N}$,
$\mathbf{F}_{2}=(p \mathbf{i}+2 p \mathbf{j}) \mathrm{N}$, where p is a positive constant.
(a) Find the angle between \mathbf{F}_{2} and \mathbf{j}.

The resultant of \mathbf{F}_{1} and \mathbf{F}_{2} is \mathbf{R}. Given that \mathbf{R} is parallel to \mathbf{i},
(b) find the value of p.

