C2 TRIGONOMETRY

1

The diagram shows triangle $A B C$ in which $A B=16 \mathrm{~cm}, \angle A B C=118^{\circ}$ and $\angle A C B=26^{\circ}$.
Use the sine rule to find the length $A C$ to 3 significant figures.
2

The diagram shows triangle $P Q R$ in which $P Q=8.2 \mathrm{~cm}, P R=11.4 \mathrm{~cm}$ and $\angle P Q R=57^{\circ}$.
Use the sine rule to find the size of $\angle P R Q$ in degrees to 1 decimal place.
In triangle $A B C, A B=16.2 \mathrm{~cm}, B C=12.3 \mathrm{~cm}$ and $\angle B A C=37^{\circ}$.
Find the two possible sizes of $\angle A C B$ and the corresponding lengths of $A C$.
4

The diagram shows triangle $X Y Z$ in which $X Y=15.3 \mathrm{~cm}, Y Z=7.8 \mathrm{~cm}$ and $\angle X Y Z=31.5^{\circ}$.
Use the cosine rule to find the length $X Z$.

The diagram shows triangle $A B C$ in which $A B=18 \mathrm{~cm}, A C=13 \mathrm{~cm}$ and $B C=17 \mathrm{~cm}$.
Use the cosine rule to find the size of $\angle A C B$.
6 Find the length x in each triangle.
a

b

c

7 Find the angle θ in each triangle.
a

b

c

8 Find the area of each of the following triangles.
a

b

c

9 Joanne walks 4.2 miles on a bearing of 138°. She then walks 7.8 miles on a bearing of 251°.
a Calculate how far Joanne is from the point where she started.
b Find, as a bearing, the direction in which Joanne would have to walk in order to return to the point where she started.

10 A ferry and a cargo ship are both approaching the same port. The ferry is 3.2 km from the port on a bearing of 076° and the cargo ship is 6.9 km from the port on a bearing of 323°.
Find the distance between the two vessels and the bearing of the cargo ship from the ferry.
11

The diagram shows triangle $A B C$ in which $A B=10.4 \mathrm{~cm}, A C=11.0 \mathrm{~cm}$ and $B C=9.7 \mathrm{~cm}$. Find the area of the triangle to 3 significant figures.

The diagram shows triangle $X Y Z$ in which $X Y=22.5 \mathrm{~cm}$ and $\angle X Y Z=34^{\circ}$.
Given that the area of the triangle is $100 \mathrm{~cm}^{2}$, find the length $X Z$.

C2 TRIGONOMETRY

1 Find to 3 decimal places the value of
a $\sin 131^{\circ}$
b $\tan 340.5^{\circ}$
c $\cos 418^{\circ}$
d $\sin \left(-165.2^{\circ}\right)$

2 Give the exact value of
a $\cos 60^{\circ}$
b $\sin 45^{\circ}$
c $\tan 45^{\circ}$
d $\cos 30^{\circ}$
e $\sin 90^{\circ}$
f $\tan 30^{\circ}$
g $\cos 120^{\circ}$
h $\sin 135^{\circ}$
i $\tan 210^{\circ}$
j $\cos 225^{\circ}$
k $\sin 300^{\circ}$
l $\tan 120^{\circ}$
m $\cos 330^{\circ}$
n $\tan 150^{\circ}$
o $\cos \left(-60^{\circ}\right)$
p $\sin 405^{\circ}$
q $\tan \left(-45^{\circ}\right)$
r $\sin \left(-240^{\circ}\right)$
s $\tan 570^{\circ}$
t $\cos \left(-150^{\circ}\right)$

3 Find to 3 decimal places the value of
a $\cos 0.42^{\mathrm{c}}$
b $\sin 4.16^{\text {c }}$
c $\tan \left(-3.1^{c}\right)$
d $\cos 11.25^{\circ}$

4 Give the exact value of
a $\sin \frac{\pi}{6}$
b $\cos \frac{\pi}{2}$
c $\sin \frac{\pi}{4}$
d $\tan \frac{\pi}{3}$
e $\cos \frac{\pi}{3}$
f $\sin \frac{2 \pi}{3}$
g $\tan \frac{3 \pi}{4}$
h $\cos \frac{5 \pi}{6}$
i $\tan \frac{5 \pi}{3}$
j $\cos \frac{5 \pi}{4}$
k $\sin \left(-\frac{\pi}{6}\right)$
l $\tan \left(-\frac{5 \pi}{6}\right)$
m $\sin 3 \pi$
n $\tan \left(-\frac{5 \pi}{4}\right)$
0 $\cos \frac{8 \pi}{3}$
p $\sin \left(-\frac{7 \pi}{3}\right)$

5

The graph shows the curve $y=\sin x^{\circ}$ in the interval $0 \leq x \leq 720$.
a Write down the coordinates of any points where the curve intersects the coordinate axes.
b Write down the coordinates of the turning points of the curve.
6

The graph shows the curve $y=\tan x^{\circ}$ in the interval $0 \leq x \leq 720$.
a Write down the coordinates of any points where the curve intersects the coordinate axes.
b Write down the equations of the asymptotes.

7 Describe the transformation that maps the graph of $y=\sin x^{\circ}$ onto the graph of
a $y=3 \sin x^{\circ}$
b $y=\sin 4 x^{\circ}$
c $y=\sin (x+60)^{\circ}$
d $y=\sin \left(-x^{\circ}\right)$

8 Sketch each of the following pairs of curves on the same set of axes in the interval $0 \leq x \leq 360^{\circ}$.

a $y=\cos x$	and	$y=3 \cos x$	b $y=\sin x$	and	$y=\sin \left(x-30^{\circ}\right)$
c $y=\cos x$	and	$y=\cos 2 x$	d $y=\tan x$	and	$y=2+\tan x$
e $y=\sin x$	and	$y=-\sin x$	f $y=\cos x$	and	$y=\cos \left(x+60^{\circ}\right)$
g $y=\tan x$	and	$y=\tan \frac{1}{2} x$	h $y=\sin x$	and	$y=1+\sin x$

9 Each curve is shown for the interval $-180^{\circ} \leq x \leq 180^{\circ}$.
Write down the coordinates of the turning points of each curve in this interval.
a

b

c

d

10 Write down the period of each of the following graphs.
a $y=\sin x^{\circ}$
b $y=\tan x^{\circ}$
c $y=2 \cos x^{\circ}$
d $y=\sin 2 x^{\circ}$
e $y=\tan (x+30)^{\circ}$
f $y=\cos \frac{1}{3} x^{\circ}$

11 Sketch each of the following curves for x in the interval $0 \leq x \leq 360$. Show the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes.
a $y=\tan x^{\circ}$
b $y=\cos (x+30)^{\circ}$
c $y=\sin 2 x^{\circ}$
d $y=1+\cos x^{\circ}$
e $y=\sin \frac{1}{2} x^{\circ}$
f $y=\tan (x+90)^{\circ}$
g $y=\sin (x-45)^{\circ}$
h $y=-\tan x^{\circ}$
i $y=\cos (x-120)^{\circ}$

12 Sketch each of the following curves for x in the interval $0 \leq x \leq 2 \pi$. Show the coordinates of any turning points and the equations of any asymptotes.
a $y=\cos x$
b $y=3 \sin x$
c $y=\tan 2 x$
d $y=\sin \left(x-\frac{\pi}{3}\right)$
e $y=\cos \frac{1}{3} x$
f $y=\sin x-2$
g $y=\tan \left(x+\frac{\pi}{4}\right)$
h $y=\sin \frac{3}{4} x$
i $y=\cos \left(x-\frac{\pi}{6}\right)$

