TRIGONOMETRY

 $B = 26^{\circ} C$ 16 cm A = C

The diagram shows triangle *ABC* in which AB = 16 cm, $\angle ABC = 118^{\circ}$ and $\angle ACB = 26^{\circ}$. Use the sine rule to find the length *AC* to 3 significant figures.

2

C2

1

The diagram shows triangle *PQR* in which *PQ* = 8.2 cm, *PR* = 11.4 cm and $\angle PQR = 57^{\circ}$. Use the sine rule to find the size of $\angle PRQ$ in degrees to 1 decimal place.

3 In triangle *ABC*, AB = 16.2 cm, BC = 12.3 cm and $\angle BAC = 37^{\circ}$. Find the two possible sizes of $\angle ACB$ and the corresponding lengths of *AC*.

The diagram shows triangle XYZ in which XY = 15.3 cm, YZ = 7.8 cm and $\angle XYZ = 31.5^{\circ}$. Use the cosine rule to find the length XZ.

5

4

The diagram shows triangle *ABC* in which AB = 18 cm, AC = 13 cm and BC = 17 cm. Use the cosine rule to find the size of $\angle ACB$.

6 Find the length *x* in each triangle.

© Solomon Press

C2 TRIGONOMETRY

8 Find the area of each of the following triangles.

- 9 Joanne walks 4.2 miles on a bearing of 138°. She then walks 7.8 miles on a bearing of 251°.
 - **a** Calculate how far Joanne is from the point where she started.
 - **b** Find, as a bearing, the direction in which Joanne would have to walk in order to return to the point where she started.
- A ferry and a cargo ship are both approaching the same port. The ferry is 3.2 km from the port on a bearing of 076° and the cargo ship is 6.9 km from the port on a bearing of 323°.
 Find the distance between the two vessels and the bearing of the cargo ship from the ferry.

11

The diagram shows triangle *ABC* in which AB = 10.4 cm, AC = 11.0 cm and BC = 9.7 cm. Find the area of the triangle to 3 significant figures.

The diagram shows triangle *XYZ* in which XY = 22.5 cm and $\angle XYZ = 34^{\circ}$. Given that the area of the triangle is 100 cm², find the length *XZ*.

The graph shows the curve $y = \sin x^{\circ}$ in the interval $0 \le x \le 720$.

- **a** Write down the coordinates of any points where the curve intersects the coordinate axes.
- **b** Write down the coordinates of the turning points of the curve.

6

C2

TRIGONOMETRY

The graph shows the curve $y = \tan x^{\circ}$ in the interval $0 \le x \le 720$.

- **a** Write down the coordinates of any points where the curve intersects the coordinate axes.
- **b** Write down the equations of the asymptotes.

C2 TRIGONOMETRY

7 Describe the transformation that maps the graph of $y = \sin x^\circ$ onto the graph of

a
$$y = 3 \sin x^{\circ}$$
 b $y = \sin 4x^{\circ}$ **c** $y = \sin (x + 60)^{\circ}$ **d** $y = \sin (-x^{\circ})$

8 Sketch each of the following pairs of curves on the same set of axes in the interval $0 \le x \le 360^\circ$.

a	$y = \cos x$	and	$y = 3 \cos x$	b $y = \sin x$	and	$y = \sin\left(x - 30^\circ\right)$
c	$y = \cos x$	and	$y = \cos 2x$	d $y = \tan x$	and	$y = 2 + \tan x$
e	$y = \sin x$	and	$y = -\sin x$	$\mathbf{f} y = \cos x$	and	$y = \cos\left(x + 60^\circ\right)$
g	$y = \tan x$	and	$y = \tan \frac{1}{2}x$	h $y = \sin x$	and	$y = 1 + \sin x$

9 Each curve is shown for the interval $-180^\circ \le x \le 180^\circ$.

Write down the coordinates of the turning points of each curve in this interval.

10 Write down the period of each of the following graphs.

a	$y = \sin x^{\circ}$	b	$y = \tan x^{\circ}$	c	$y = 2 \cos x^{\circ}$
d	$y = \sin 2x^{\circ}$	e	$y = \tan (x + 30)^{\circ}$	f	$y = \cos \frac{1}{3}x^{\circ}$

11 Sketch each of the following curves for x in the interval $0 \le x \le 360$. Show the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes.

a	$y = \tan x^{\circ}$	b $y = \cos(x+30)^\circ$	c	$y = \sin 2x^{\circ}$
d	$y = 1 + \cos x^{\circ}$	$e y = \sin \frac{1}{2}x^{\circ}$	f	$y = \tan (x + 90)^\circ$
g	$y = \sin (x - 45)^\circ$	h $y = -\tan x^{\circ}$	i	$y = \cos\left(x - 120\right)^\circ$

12 Sketch each of the following curves for x in the interval $0 \le x \le 2\pi$. Show the coordinates of any turning points and the equations of any asymptotes.

a	$y = \cos x$	b $y = 3 \sin x$	c	$y = \tan 2x$
d	$y = \sin\left(x - \frac{\pi}{3}\right)$	$e y = \cos \frac{1}{3}x$	f	$y = \sin x - 2$
g	$y = \tan\left(x + \frac{\pi}{4}\right)$	h $y = \sin \frac{3}{4}x$	i	$y = \cos\left(x - \frac{\pi}{6}\right)$

© Solomon Press