

Constant Acceleration: Vertical Motion - SOLUTIONS

- A stone is thrown vertically upwards with speed 16 m s⁻¹ from a point h metres above the 1. ground. The stone hits the ground 4 s later. Find
 - (a) the value of h, (3)
 - (b) the speed of the stone as it hits the ground. (3)Jan 06 Q1

$$\frac{1}{1} \int_{a}^{b} \int_{a}$$

b) the
$$S = -h(t)$$
 (1) $V = u + at$
 $V = 16$
 $V = 16$
 $V = 16$
 $V = 16 + (-9.8)(4)$
 $V = u + at$
 $V = 16$
 $V = 16$
 $V = 16$
 $V = 16$
 $V = u + at$
 $V = u + at$

- A ball is projected vertically upwards with speed 21 m s⁻¹ from a point A, which is 1.5 m 2. above the ground. After projection, the ball moves freely under gravity until it reaches the ground. Modelling the ball as a particle, find
 - (a) the greatest height above A reached by the ball,
 - (3) (b) the speed of the ball as it reaches the ground,
 - (c) the time between the instant when the ball is projected from A and the instant when the ball reaches the ground.

Jan 07 Q5

(3)

$$\uparrow u = 21 ms^{-1}$$

$$\uparrow S = ?$$

$$u = 21$$

$$v = 0$$

$$a = -9.8 (4)$$

$$t$$
(1) Using $v^2 = u^2 + 2as$

$$0 = 21^2 + 2(-9.8) s$$

$$s = \frac{441}{19.6}$$

$$= 22.5 m$$

b,
$$\uparrow^{\text{ve}} S = -1.5 \text{ C4}$$

 $v = 21$
 $v = 7$
 $v = -9.8 \text{ C4}$
 $v = -9.8 \text{ C4}$

b,
$$\uparrow^{\text{vr}}$$
 $S = -1.5 \text{ C4}$
 $v = 21$
 $v = ?$
 $a = -9.8 \text{ (4)}$
 $v^2 = 2(^2 + 2)(-9.8)(-1.5)$
 $v^2 = 470.4$
 $v = \sqrt{470.4} = 21.68...$
 $v = 22 \text{ ms}^{-1} \text{ (2 S.f.)}$

c)
$$v^2$$

 $s = -1.5$ (4)
 $u = 21$
 $v = -9.8$ (4)
 $v = -9.8$ (4)

c)
$$v^2$$

 $\int \frac{1}{1} \frac{s = -1.5}{u = 21} (1) (1) s = ut + \frac{1}{2}at^2$
 $v = -9.8(1)$
 $v = -9.8(1)$
 $v = -1.5 = 21t + \frac{1}{2}(-9.8)t^2$
 $v = -1.5 = 21t - 4.9t^2$

Alternative method

$$V = u + at$$
 $V = u + at$
 $V = u +$

$$t = \frac{21 \pm \sqrt{(21)^2 - 4(4.9)(-1.5)}}{2(4.9)}$$

$$= 4.355...$$

$$= 4.45 (2 5.7)$$

A firework rocket starts from rest at ground level and moves vertically. In the first 3 s of its 3. motion, the rocket rises 27 m. The rocket is modelled as a particle moving with constant acceleration a m s⁻². Find

(a) the value of
$$a$$
,

After 3 s, the rocket burns out. The motion of the rocket is now modelled as that of a particle moving freely under gravity.

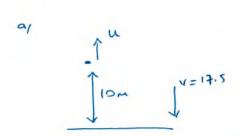
(c) Find the height of the rocket above the ground 5 s after it has left the ground. (4)

Jan 08 Q2

$$a_{1} + c = 27$$
 $(\uparrow) = c = c + \frac{1}{2}at^{2}$
 $\uparrow = 0$
 $\downarrow = 0$
 $\downarrow = 0$
 $\downarrow = 3$
 $\downarrow = 3$
 $\downarrow = 3$
 $\downarrow = 3$
 $\downarrow = 0$
 $\downarrow = 3$
 $\downarrow = 0$
 $\downarrow = 0$
 $\downarrow = 0$
 $\downarrow = 3$
 $\downarrow = 0$
 $\downarrow = 0$
 $\downarrow = 3$
 $\downarrow = 3$

$$V^2 = 0 + 2(6)(27)$$
 $V^2 = 324$

c/ from 3s to 5s


$$= 1 (2) + \frac{1}{2}(-9.8)(2^{2})$$

$$= 16.4 \text{ m}$$

- 4. At time t = 0, a particle is projected vertically upwards with speed u m s⁻¹ from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s⁻¹. Find
 - (a) the value of u, (3)
 - (b) the value of T

(4) June 08 Q2

$$S = -10 (1)$$

$$U = U$$

$$Y = -17.5 (1)$$

$$Q = -4.8 (1)$$

$$U = T$$

$$(\uparrow) V^{2} = u^{2} + 2 a s$$

$$(-17.5)^{2} = u^{2} + 2 (-10)$$

$$306.25 = u^{2} + 196$$

$$u^{2} = 110.25$$

$$u = \sqrt{110.25} = 10.5 \text{ ms}^{-1}$$

b,
$$\uparrow$$
 S = -10(1)
U = 10.5
V = -12.5(1)
a = -9.8(1)
t = T

$$\begin{array}{c} (\uparrow) \quad S = ut + \frac{1}{2}at^2 \\ -10 = 10.5t + \frac{1}{2}(-9.8)t^2 \\ -10 = 10.5t - 4.9t^2 \end{array}$$

$$4.9t^{2} - 10.5t - 10 = 0$$

 $t = 10.5 \pm \sqrt{(-10.5)^{2} + ((4.9)(-10))}$

Alternative method

- A ball is projected vertically upwards with a speed of 14.7 m s⁻¹ from a point which is 49 m 5. above horizontal ground. Modelling the ball as a particle moving freely under gravity, find
 - (a) the greatest height, above the ground, reached by the ball, (4)
 - (b) the speed with which the ball first strikes the ground, (3)
 - (c) the total time from when the ball is projected to when it first strikes the ground. (3)

June 10 Q6

greatest height =)
$$v = 0$$

The second of t

(c)
$$\uparrow$$
 $S = -49(\downarrow)$ (\uparrow) $V = u + at$
 $u = 14.7$
 $v = -34.3(\downarrow)$
 $v = -9.8(\downarrow)$
 $v = -9.8(\downarrow)$

-49=14.7++1(-9.8)1 4.9+2-14.7t-49=0 t = +14.7 = [14.72-4(4.9)(-4

- 6. A ball is thrown vertically upwards with speed u m s⁻¹ from a point P at height h metres above the ground. The ball hits the ground 0.75 s later. The speed of the ball immediately before it hits the ground is 6.45 m s⁻¹. The ball is modelled as a particle.
 - (a) Show that u = 0.9.
 - (b) Find the height above P to which the ball rises before it starts to fall towards the ground again. (2)
 - (c) Find the value of h.

(3)

t = 0.75 (time of flight)

$$(\uparrow) V = u + at$$

-6.45 = u + (-9.8)(0.75)
 $u = -6.45 + (9.8 \times 0.75)$

(b) Max height => v=0

(c)
$$\uparrow$$
 S = -h (+)
 h = 0.9
 h = -6.45(+)
 h = -9.8(+)
 h = 0.75

$$(\uparrow) S = ut + \frac{1}{2}at^{2}$$

$$-h = 0.9(0.75) + \frac{1}{2}(-9.8)(0.75)^{2}$$

$$-h = 0.675 - 2.75625$$

$$-h = -2.08125$$

$$h = 2.08125$$