Constant Acceleration : Horizontal Motion - Edexcel Past Exam Questions

1. Two cars A and B are moving in the same direction along a straight horizontal road. At time $t=0$, they are side by side, passing a point O on the road. Car A travels at a constant speed of $30 \mathrm{~m} \mathrm{~s}^{-1}$. Car B passes O with a speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$, and has constant acceleration of $4 \mathrm{~m} \mathrm{~s}^{-2}$. Find
(a) the speed of B when it has travelled 78 m from O,
(b) the distance from O of A when B is 78 m from O,
(c) the time when B overtakes A.
2. A stone S is sliding on ice. The stone is moving along a straight line $A B C$, where $A B=24 \mathrm{~m}$ and $A C=30 \mathrm{~m}$. The stone is subject to a constant resistance to motion of magnitude 0.3 N . At A the speed of S is $20 \mathrm{~m} \mathrm{~s}^{-1}$, and at B the speed of S is $16 \mathrm{~m} \mathrm{~s}^{-1}$. Calculate
(a) the deceleration of S,
(b) the speed of S at C.
3. In taking off, an aircraft moves on a straight runway $A B$ of length 1.2 km . The aircraft moves from A with initial speed $2 \mathrm{~m} \mathrm{~s}^{-1}$. It moves with constant acceleration and 20 s later it leaves the runway at C with speed $74 \mathrm{~m} \mathrm{~s}^{-1}$. Find
(a) the acceleration of the aircraft,
(b) the distance $B C$.
4. A train moves along a straight track with constant acceleration. Three telegraph poles are set at equal intervals beside the track at points A, B and C, where $A B=50 \mathrm{~m}$ and $B C=50 \mathrm{~m}$. The front of the train passes A with speed $22.5 \mathrm{~m} \mathrm{~s}^{-1}$, and 2 s later it passes B. Find
(a) the acceleration of the train,
(b) the speed of the front of the train when it passes C,
(c) the time that elapses from the instant the front of the train passes B to the instant it passes C.
5. Three posts P, Q and R, are fixed in that order at the side of a straight horizontal road. The distance from P to Q is 45 m and the distance from Q to R is 120 m . A car is moving along the road with constant acceleration $a \mathrm{~m} \mathrm{~s}^{-2}$. The speed of the car, as it passes P, is $u \mathrm{~m} \mathrm{~s}^{-1}$. The car passes Q two seconds after passing P, and the car passes R four seconds after passing Q.

Find
(i) the value of u,
(ii) the value of a.

