

Representations of Data: Histograms-Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 07 Q5

Question number	Scheme	Marks	
5. (a)	Time is a <u>continuous</u> variable <u>or</u> data is in a <u>grouped</u> frequency table	B1	(1)
(b)	Area is proportional to frequency or $A \propto f$ or $A = kf$	B1	(1)
(c)	$3.6 \times 2 = 0.8 \times 9$ 1 child represented by 0.8	M1 dM1 A1 cso	(3)
(d)	$(Total) = \frac{24}{0.8}, = \underline{30}$	M1, A1 7 mai	(2) ks
(b)	1 st B1 for one of these correct statements. "Area proportional to frequency density" or "Area = frequency" is B0		
(c)	1st M1 for a correct combination of any 2 of the 4 numbers: 3.6, 2, 0.8 and 9 e.g. 3.6×2 or 3.6/0.8 or 0.8/2 etc BUT e.g. 3.6/2 is M0 2nd M1 dependent on 1st M1 and for a correct combination of 3 numbers leading to May be in separate stages but must see all 4 numbers A1cso for fully correct solution. Both Ms scored, no false working seen and communication of 3 numbers.		<u> </u>
(d)	M1 for $\frac{24}{0.8}$ seen or implied.		

Question 2 : June 07 Q5

Question Number	Scheme	Marks
(a)	18-25 group, area=7x5=35	B1
	25-40 group, area=15x1=15	B1 (2)
(b)	(25-20)×5+(40-25)×1=40	M1A1 (2)
(c)	Mid points are 7.5, 12, 16, 21.5, 32.5	M1
1950	$\sum \mathbf{f} = 100$	B1
	$\frac{\sum ft}{\sum f} = \frac{1891}{100} = 18.91$	M1A1
		(4)
(d)	$\sigma_t = \sqrt{\frac{41033}{100} - \bar{t}^2}$ $\sqrt{\frac{n}{n-1} \left(\frac{41033}{100} - \bar{t}^2\right)}$ alternative OK	М1
		M1
	$\sigma_t = \sqrt{52.74} = 7.26$	A1
(0)	$Q_2 = 18$ or 18.1 if (n+1) used	(3)
(e)	THE THE STATE OF T	B1
	$Q_1 = 10 + \frac{15}{16} \times 4 = 13.75$ or 15.25 numerator gives 13.8125	M1A1
	$Q_3 = 18 + \frac{25}{35} \times 7 = 23$ or 25.75 numerator gives 23.15	A1
	55	(4)

Notes:	SyS is analysh avidence of method for M1	
(b)	5x5 is enough evidence of method for M1. Condone 19.5, 20.5 instead of 20 etc.	
	Award 2 if 40 seen.	
(c)	Look for working for this question in part (d) too.	
` '	Use of some mid-points, at least 3 correct for M1. These may be tabulated in (d).	
	$\sum \mathrm{f} t$	
	Their $\frac{\sum ft}{\sum f}$ for M1 and anything that rounds to 18.9 for A1.	
(d)	Clear attempt at $\frac{41033}{100} - \overline{t}^2$ or $\frac{n}{n-1} \left(\frac{41033}{100} - \overline{t}^2 \right)$ alternative for first M1.	
	They may use their \overline{t} and gain the method mark.	
	Square root of above for second M1	
	Anything that rounds to 7.3 for A1.	
(e)	Clear attempt at either quartile for M1	
	These will take the form 'their lower limit'+ correct fraction x	
	'their class width'.	
	Anything that rounds to 13.8 for lower quartile.	
10	23 or anything that rounds to 23.2 dependent upon method used.	
(f)	Anything that rounds to 0.38 for B1 or 0.33 for B1 if (n+1) used.	

Question 3: Jan 08 Q3

Question Number		Scheme	Marks
	2.	idth 1 1 4 2 3 5 3 12 eq. Density 6 7 2 6 5.5 2 1.5 0.5 0.5 ×12 or 6	MI Al
	(90.5	area is $(1\times6)+(1\times7)+(4\times2)+,=70$ $(5-78.5)\times\frac{1}{2}\times\frac{140}{\text{their }70}$ ber of runners is 12 "70 seen anywhere"	MI B1 A1 (5) Total 5 marks
	Bewa	for attempt at width of the correct bar (90.5 - 78.5) [Maybe on histogram or in table] for 0.5×12 or 6 (may be seen on the histogram. Must be related to the are of the bar above $78.5 - 90.5$. for attempting area of correct bar $\times \frac{140}{\text{their }70}$ for 70 seen anywhere in their working for correct answer of 12. mum working required is $2 \times 0.5 \times 12$ where the 2 should come from $\frac{140}{70}$ are $90.5 - 78.5 = 12$ (this scores M1A0M0B0A0) mon answer is $0.5 \times 12 = 6$ (this scores M1A1M0B0A0) sure send to review e.g. $2 \times 0.5 \times 12 = 12$ without 70 being seen	a

Question 4 : Jan 09 Q5

Question Number	Scheme	Mar	ks
(a)	8-10 hours: width = 10.5 - 7.5 = 3 represented by 1.5cm		
	16-25 hours: width = 25.5 - 15.5 = 10 so represented by <u>5 cm</u>	B1	
	8- 10 hours: height = $fd = 18/3 = 6$ represented by 3 cm	M1	
	16-25 hours: height = $fd = 15/10 = 1.5$ represented by <u>0.75 cm</u>	A1	(3)
(b)	(52-36)	M1	
	$Q_2 = 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$	A1	
	$Q_1 = 5.5 + \frac{(26-20)}{16} \times 2[=6.25 \text{ or } 6.3] \text{ or } 5.5 + \frac{(26.25-20)}{16} \times 2[=6.3]$	A1	
	$Q_3 = 10.5 + \frac{(78-54)}{25} \times 5[=15.3]$ or $10.5 + \frac{(78.75-54)}{25} \times 5[=15.45 \setminus 15.5]$	A1	
	25	A1ft	(5)
(-)	IQR = (15.3 - 6.3) = 9	Airc	(5)
(c)	S 1333.5	M1 A1	
	$\sum fx = 1333.5 \Rightarrow \overline{x} = \frac{1333.5}{104} =$ AWRT <u>12.8</u>	MIAI	
	$\sum fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27254}{104} - \overline{x}^2} = \sqrt{262.05 - \overline{x}^2} \qquad \text{AWRT } 9.88$	M1 A1	(4)
(d)	$2Jx - 2/254 \Rightarrow 0_x - \sqrt{\frac{104}{104}} - x = \sqrt{202.05 - x} $ AWK1 <u>9.88</u>	MI AI	(-)
	$Q_3 - Q_2 = 5.1 > Q_2 - Q_1 = 3.9$ or $Q_2 < \overline{x}$	B1ft	(2)
(e)	So data is positively skew	dB1	(2)
	Use median and IQR,	B1	2239
	since data is skewed or not affected by extreme values or outliers	B1	(2) [16]
(a)	M1 For attempting both frequency densities $\frac{18}{3}$ (= 6) and $\frac{15}{10}$, and $\frac{15}{10} \times SF$, where SF	°≠1	
(b)	NB Wrong class widths (2 and 9) gives $\frac{h}{1.66} = \frac{3}{9} \rightarrow h = \frac{5}{9}$ or 0.55 and scores	M1A0	
3.75	M1 for identifying correct interval and a correct fraction e.g. $\frac{\frac{1}{2}(104)-36}{18}$. Condone 5.	2.5 or 53	
	1^{st} A1 for 10.2 for median. Using $(n+1)$ allow awrt 10.3		
	THE ROTE IS NO. 18 AS ASSOCIATED THE ROTE IN THE ROTE OF THE ROTE IN THE ROTE OF THE ROTE	<u>NB</u> :	
	A second	Must see	
(0)	3^{rd} A1 for correct expressions for both Q_1 and Q_3	some	
(c)	Air for IQL, it their quarties. Using (ii - 1) gives 0.20 and 15.45	method	
	1 st M1 for attempting $\sum fx$ and \overline{x}		
(d)	2^{nd} M1 for attempting $\sum fx^2$ and σ_x , $\sqrt{\ }$ is needed for M1. Allow $s = \text{awrt } 9.93$		
	1 st B1ft for suitable test, values need not be seen but statement must be compatible	with	
	values used. Follow through their values 2 nd dB1 Dependent upon their test showing positive and for stating positive skew		
(e)	2 nd dB1 Dependent upon their test showing positive and for stating positive skew If their test shows negative skew they can score 1 st B1 but lose the second		
	1 st B1 for choosing median and IQR. Must mention <u>both</u> . } <u>Award independent</u>	endently	
	2 nd B1 for suitable reason }		
	e.g. "use median because data is skewed" scores B0B1 since IQR is not mentioned	l	

Question 5 : June 09 Q3

Question Number	Scheme	Marks
(a)	1(cm) cao	B1
(b)	10 cm ² represents 15 10/15 cm ² represents 1 or 1cm ² represents 1.5 Therefore frequency of 9 is $\frac{10}{15} \times 9$ or $\frac{9}{1.5}$ height = 6(cm)	M1 A1
Notes	If 3(a) and 3(b) incorrect, but their (a) x their (b)=6 then award B0M1A0 3(b) Alternative method: f/cw=15/6=2.5 represented by 5 so factor x2 award M1 So f/cw=9/3=3 represented by 3x2=6. Award A1.	,,,,

Question 6 : June 11 Q5

Question Number	Scheme	Marks
(a)	<u>10.5</u>	B1 (1)
(b)	$(Q_2 =)$ $(15.5+)$ $\frac{\frac{1}{2} \times 30 - 14}{8} \times 3$ or $\frac{\frac{1}{2} \times 31 - 14}{8} \times 3$	M1
	= 15.875 or 16.0625	A1 (2)
(c)	$\overline{x} = \frac{477.5}{30} = \underline{15.9}$ (15.918) [Accept $\frac{191}{12}$ or $15\frac{11}{12}$]	M1, A1
	$\sigma = \sqrt{\frac{8603.75}{30} - \overline{x}^2} = \underline{5.78} (\text{accept } s = 5.88)$	M1A1ft, A1
	1 30	(5)

	Notes
(a)	In parts (a) to (c) a correct answer with no working scores full marks for that value. B1 for 10.5 which may be in the table
(b)	M1 for a correct ratio and times 3, ignore the lower boundary for this mark A1 for awrt 15.9 (if $n = 30$ used) or awrt 16.1 (if $n+1 = 31$ is used)
(c)	1^{st} M1 for attempt at $\sum fx$ (this may be seen in the table as fx : 10, 73.5, 70, 136, 82, 106
	[condone 1 slip] or awrt 500) and use of $\frac{\sum fx}{\sum f}$ or a correct expression for mean.
	2^{nd} M1 for an attempt at σ or σ^2 , can ft their mean, condone mis-labelling $\sigma^2 = $ etc. Allow use of their $\sum fx^2$ (awrt 9000)
	2^{nd} A1ft for a correct expression including square root, ft their mean but not their $\sum fx^2$.
	No label or correct label is OK but wrong label (e.g. $\sigma^2 = $) is A0 3 rd A1 for awrt 5.78, allow $s = \text{awrt } 5.88$. SC Allow M1A1A0 for awrt 5.79 if \overline{x} correct