

Algebraic Expression - Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 05 Q1

Question number	Scheme		Marks	
	(a) 4	Bi		
	(b) $16^{-\frac{3}{2}} = \frac{1}{16^{\frac{3}{2}}}$ and attempt to find $16^{\frac{3}{2}}$	MI		
	$\frac{1}{64}$ (or exact equivalent, e.g. 0.015625)	Al	(3)	
			3	
)	(b) Any attempt to evaluate $16^{\frac{3}{2}}$. Answer only scores both marks.			

Question 2: June 05 Q1

Question Number	Scheme		Scheme		Marks	
(a)	2	Penalise ±	B1	(1)		
(b)	$8^{-\frac{2}{3}} = \frac{1}{\sqrt[3]{64}} \text{ or } \frac{1}{(a)^2} \text{ or } \frac{1}{\sqrt[3]{8^2}} \text{ or } \frac{1}{8^{\frac{2}{3}}}$ $= \frac{1}{4} \text{ or } 0.25$	Allow ±	M1 A1	(2) (3)		
(b)	M1 for understanding that "-" power means reciprocal $8^{\frac{2}{3}} = 4$ is M0A0 and $-\frac{1}{4}$ is M1A0					

Question 3: June 05 Q7

Question Number	Scheme	Marks
(a)	$(3-\sqrt{x})^2 = 9-6\sqrt{x}+x$	M1
	$(3 - \sqrt{x})^2 = 9 - 6\sqrt{x} + x$ $\div by\sqrt{x} \longrightarrow 9x^{-\frac{1}{2}} - 6 + x^{\frac{1}{2}}$	A1 c.s.o.
		(2)
(a)	M1 Attempt to multiply out $(3 - \sqrt{x})^2$. Must have 3 or 4 terms, allow one sign error A1 cso Fully correct solution to printed answer. Penalise wrong working.	

Question 4: Jan 06 Q1

Question number	Scheme		Marks
		Factor of x . (Allow $(x-0)$) Factorise 3 term quadratic	M1 M1 A1
			(3) Total 3 marks
	Alternative:		
	$(x^2-3x)(x-1)$ or $(x^2-x)(x-3)$ scores the second	M1 (allow \pm for each sign),	
	then $x(x-3)(x-1)$ scores the <u>first</u> M1, and A1 if con	rect.	
	Alternative:		
	Finding factor $(x-1)$ or $(x-3)$ by the factor theorem	n scores the second M1,	
	then completing, using factor x , scores the <u>first</u> M1, a	and A1 if correct.	
	Factors "split": e.g. $x(x^2 - 4x + 3) \Rightarrow (x - 3)(x - 1)$.	Allow full marks.	
	Factor x not seen: e.g. Dividing by $x \Rightarrow (x-3)(x-1)$. M0 M1 A0.	
	If an equation is solved, i.s.w.		

Question 5: Jan 06 Q5

Question number	Scheme	Marks
	(a) $3\sqrt{5}$ (or $a = 3$)	B1
		(1)
	(b) $\frac{2(3+\sqrt{5})}{(3-\sqrt{5})} \times \frac{(3+\sqrt{5})}{(3+\sqrt{5})}$	M1
	$(3-\sqrt{5})(3+\sqrt{5})=9-5$ (= 4) (Used as or intended as denominator)	В1
	$(3+\sqrt{5})(p\pm q\sqrt{5}) = \dots 4 \text{ terms } (p \neq 0, q \neq 0)$ (Independent)	M1
	or $(6+2\sqrt{5})(p \pm q\sqrt{5}) = \text{ 4 terms } (p \neq 0, q \neq 0)$	
	[Correct version: $(3+\sqrt{5})(3+\sqrt{5}) = 9+3\sqrt{5}+3\sqrt{5}+5$, or double this.]	
	$\frac{2(14+6\sqrt{5})}{4} = 7+3\sqrt{5}$ 1 st A1: $b=7$, 2 nd A1: $c=3$	A1 A1
		(5)
		Total 6 marks

Question 6: June 06 Q6

Question number	Scheme	Mark	S.
	$16 + 4\sqrt{3} - 4\sqrt{3} - \left(\sqrt{3}\right)^2 \text{or} 16 - 3$ = 13	M1 A1c.a.o	(2)
(b)	$\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}}$ $= \frac{26(4-\sqrt{3})}{13} = \frac{8-2\sqrt{3}}{13} \text{or} 8+(-2)\sqrt{3} \text{or} a=8 \text{ and } b=-2$	M1	
	$= \frac{26(4-\sqrt{3})}{13} = \frac{8-2\sqrt{3}}{13} \text{or} 8+(-2)\sqrt{3} \text{or} a=8 \text{ and } b=-2$	A1	(2) 4
(a)	M1 For 4 terms, at least 3 correct e.g. $8 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^2$ or $16 \pm 8\sqrt{3} - (\sqrt{3})^2$ or $16 + 3$ 4^2 instead of 16 is OK $(4 + \sqrt{3})(4 + \sqrt{3})$ scores M0A0		
(b)	M1 For a correct attempt to rationalise the denominator Can be implied $NB = \frac{-4 + \sqrt{3}}{-4 + \sqrt{3}} \text{ is OK}$		

Question 7: June 06 Q9

Question number	Scheme	Marks			
(a)	$f(x) = x[(x-6)(x-2)+3]$ or $x^3 - 6x^2 - 2x^2 + 12x + 3x = x($	M1			
	$f(x) = x(x^2 - 8x + 15)$ $b = -8 \text{ or } c = 15$	A1			
	both and $a = 1$	A1 (3)			
(b)	$(x^2 - 8x + 15) = (x - 5)(x - 3)$	M1			
	f(x) = x(x-5)(x-3)	A1 (2)			
(c)					
	y Shape	В1			
	their 3 <u>or</u> their 5	B1f.t.			
	$ \frac{\text{both their 3 and their 5}}{\text{and (0,0) by implication}} $				
		8			
(a)	M1 for a correct method to get the factor of x . x (as printed is the minimum.				
	$1^{\text{st}} A1 \text{ for } b = -8 \text{ or } c = 15.$				
	-8 comes from -6-2 and must be coefficient of x , and 15 from 6x2+3 and m	ust have no xs.			
	2^{nd} A1 for $a = 1$, $b = -8$ and $c = 15$. Must have $x(x^2 - 8x + 15)$.				
(b)	M1 for attempt to factorise their 3TQ from part (a).				
	A1 for all 3 terms correct. They must include the x .				
,	For part (c) they must have at most 2 non-zero roots of their $f(x) = 0$ to ft their 3 and their 5.				
(a)	1 st B1 for correct shape (i.e. from bottom left to top right and two turning points.)				
(c)	for correct shape (i.e. from bottom left to top right and two turning parts and B1f.t. for crossing at their 3 or their 5 indicated on graph or in text.	ooints.)			

Question 8: Jan 07 Q2

Question number	Scheme		
	(a) $6\sqrt{3}$	B1	(1)
	(b) Expanding $(2 - \sqrt{3})^2$ to get 3 or 4 separate terms	M1	
	7, $-4\sqrt{3}$ $(b=7, c=-4)$	A1, A1	(3)
			4
	(a) $\pm 6\sqrt{3}$ also scores B1.		
	(b) M1: The 3 or 4 terms may be wrong.		
	1^{st} A1 for 7, 2^{nd} A1 for $-4\sqrt{3}$.		
	Correct answer $7 - 4\sqrt{3}$ with no working scores all 3 marks.		
	$7 + 4\sqrt{3}$ with or without working scores M1 A1 A0.		
	Other wrong answers with no working score no marks.		

Question 9: June 07 Q1

Question number		Scheme	Marks
	9-5	or $3^2 + 3\sqrt{5} - 3\sqrt{5} - \sqrt{5} \times \sqrt{5}$ or $3^2 - \sqrt{5} \times \sqrt{5}$ or $3^2 - (\sqrt{5})^2$	M1
	= <u>4</u>		A1cso (2)
,	M1	for an attempt to multiply out. There must be at least 3 correct terms. A only, no arithmetic errors.	llow one sign slip
	e.g.	$3^2 + 3\sqrt{5} - 3\sqrt{5} + (\sqrt{5})^2$ is M1A0	
		$3^2 + 3\sqrt{5} + 3\sqrt{5} - (\sqrt{5})^2$ is M1A0 as indeed is $9 \pm 6\sqrt{5} - 5$	
	BUT	$9 + \sqrt{15} - \sqrt{15} - 5 = 4$ is M0A0 since there is more than a sign error.	
		$6+3\sqrt{5}-3\sqrt{5}-5$ is M0A0 since there is an arithmetic error. If all you see is 9 ± 5 that is M1 but please check it has not come from in	ncorrect working.
		Expansion of $(3+\sqrt{5})(3+\sqrt{5})$ is M0A0	
	A1cso	for 4 only. Please check that no incorrect working is seen.	
		Correct answer only scores both marks.	

Question 10: June 07 Q2

Question number	Scheme	Mark	s
	(a) Attempt $\sqrt[3]{8}$ or $\sqrt[3]{(8^4)}$	M1	
	= <u>16</u>	A1	(2)
	(b) $5x^{\frac{1}{3}}$ 5, $x^{\frac{1}{3}}$	B1, B1	(2)
(4 4)			4
(a)	M1 for: 2 (on its own) or $(2^3)^{\frac{4}{3}}$ or $\sqrt[3]{8}$ or $(\sqrt[3]{8})^4$ or 2^4 or $\sqrt[3]{8^4}$ or $\sqrt[3]{4096}$ 8^3 or 512 or $(4096)^{\frac{1}{3}}$ is M0 A1 for 16 only		

(b) 1st B1 for 5 on its own or × something.

So e.g.
$$\frac{5x^{\frac{4}{3}}}{x}$$
 is B1 But $5^{\frac{1}{3}}$ is B0

An expression showing cancelling is not sufficient

(see first expression of QC0184500123945 the mark is scored for the second expression)

$$2^{\text{nd}}$$
 B1 for $x^{\frac{1}{3}}$

Can use ISW (incorrect subsequent working)

e.g $5x^{\frac{4}{3}}$ scores B1B0 but it may lead to $\sqrt[3]{5x^4}$ which we ignore as ISW.

Correct answers only score full marks in both parts.

Question 11: Jan 08 Q2

		Marks	
	(a) 2	B1	(1)
1	(b) x^9 seen, or $(answer to (a))^3$ seen, or $(2x^3)^3$ seen.	M1	
	$8x^9$	A1	(2)
			3
	(b) M: Look for x^9 first if seen, this is M1.		
	If not seen, look for $(answer to (a))^3$, e.g. $2^3 \dots$ this would score M1 even if it does not subsequently become 8. (Similarly for other answers to (a)).		
	In $(2x^3)^3$, the 2^3 is implied, so this scores the M mark.		
3	Negative answers:		
	(a) Allow -2 . Allow ± 2 . Allow 2 or -2 .		
	(b) Allow $\pm 8x^9$. Allow ' $8x^9$ or $-8x^9$ '.		
100	N.B. If part (a) is wrong, it is possible to 'restart' in part (b) and to score full marks in part (b).		

Question 12: Jan 08 Q3

Question number	Scheme			Marks	
	$\frac{\left(5 - \sqrt{3}\right)}{\left(2 + \sqrt{3}\right)} \times \frac{\left(2 - \sqrt{3}\right)}{\left(2 - \sqrt{3}\right)}$ $= \frac{10 - 2\sqrt{3} - 5\sqrt{3} + \left(\sqrt{3}\right)^{2}}{\dots} \qquad \left(= \frac{10 - 7\sqrt{3}}{\dots}\right)$			M1	
	$= \frac{10 - 2\sqrt{3} - 5\sqrt{3} + (\sqrt{3})^{2}}{\dots} \qquad \left(= \frac{10 - 7\sqrt{3}}{\dots} \right)$	+3		M1	
	$\left(=13-7\sqrt{3}\right) \qquad \left(\text{Allow } \frac{13-7\sqrt{3}}{1}\right)$	13	(a = 13)	A1	
		-7√3	(b = -7)	A1	(4 4
	1^{st} M: Multiplying top and bottom by $(2-\sqrt{2})$	$\sqrt{3}$). (As shown above is suf	fficient).		
	2 nd M: Attempt to multiply out numerator (: 3 terms correct.	$(5-\sqrt{3})(2-\sqrt{3})$. Must have	at least		
	Final answer: Although 'denominator = 1' is obviously be the final answer full marks. (Also M0 M1 A1	r (not an intermediate step),			
	The A marks cannot be scored unless the 1 st but this 1 st M mark <u>could</u> be implied by condenominator.		nerator <u>and</u>		
	It \underline{is} possible to score M1 M0 A1 A0 or M1 the numerator).	- 100 mm - 100 mm			
	Special case: If numerator is multiplied by 2^{nd} M can still be scored for at				
	$10 - 2\sqrt{3} + 5\sqrt{3} - (\sqrt{3})^2$. The maximum score in the sp	ecial case is 1 mark: M0 M	1 A0 A0		
	Answer only: Scores no marks.				
	Alternative method: $5 - \sqrt{3} = (a + b\sqrt{3})(2 + \sqrt{3})$				
	$(a+b\sqrt{3})(2+\sqrt{3}) = 2a + a\sqrt{3} + 2b\sqrt{3} + 3$ 5 = 2a + 3b	M1: At least 3 terms corre	ect.		
	$-1 = a + 2b \qquad a = \dots \text{ or } b = \dots$	M1: Form and attempt to simultaneous equation			
	a = 13, b = -7	A1, A1			

Question 13: June 08 Q2

Question Number	Scheme	Marks
	$x(x^2-9)$ or $(x\pm 0)(x^2-9)$ or $(x-3)(x^2+3x)$ or $(x+3)(x^2-3x)$	B1
	x(x-3)(x+3)	M1 A1 (3)
		(3 marks)

Question 14: Jan 09 Q1

Question Number	Scheme	Marks
(a)	5 (±5 is B0)	B1 (1)
(b)	$\frac{1}{\left(\text{their 5}\right)^2}$ or $\left(\frac{1}{\text{their 5}}\right)^2$	M1
	$=\frac{1}{25}$ or 0.04 $(\pm \frac{1}{25}$ is A0)	A1 (2)
(b)	M1 follow through their value of 5. Must have reciprocal and square. 5^{-2} is <u>not</u> sufficient to score this mark, unless $\frac{1}{5^2}$ follows this.	
	A negative introduced at any stage can score the M1 but not the A1, e.g. $125^{-\frac{2}{3}} = \left(-\frac{1}{5}\right)^2 = \frac{1}{25}$ scores M1 A0	
	$125^{-\frac{2}{3}} = -\left(\frac{1}{5}\right)^2 = -\frac{1}{25}$ scores M1 A0.	
	Correct answer with no working scores both marks.	
	Alternative: $\frac{1}{\sqrt[3]{125^2}}$ or $\frac{1}{(125^2)^{\frac{1}{3}}}$ M1 (reciprocal and the correct number squared)	
	$ \begin{pmatrix} = \frac{1}{\sqrt[3]{15625}} \\ = \frac{1}{25} \qquad A1 $	

Question 15: Jan 09 Q3

Question Number	Scheme	Marks
	$\sqrt{7}^2 + 2\sqrt{7} - 2\sqrt{7} - 2^2$, or $7 - 4$ or an exact equivalent such as $\sqrt{49} - 2^2 = 3$	M1 A1 [2]
	 M1 for an expanded expression. At worst, there can be one wrong term and one wrong sign, or two wrong signs. e.g. 7+2√7-2√7-2 is M1 (one wrong term -2) 7+2√7+2√7+4 is M1 (two wrong signs +2√7 and +4) 7+2√7+2√7+2 is M1 (one wrong term +2, one wrong sign+2√7) √7+2√7-2√7+4 is M1 (one wrong term √7, one wrong sign+4) √7+2√7-2√7-2 is M0 (two wrong terms √7 and -2) 7+√14-√14-4 is M0 (two wrong terms √14 and -√14) If only 2 terms are given, they must be correct, i.e. (7-4) or an equivalent unsimplified version to score M1. The terms can be seen separately for the M1. Correct answer with no working scores both marks. 	

Question 16: Jan 09 Q6

Question Number	Scheme	Marks
(a)	$2x^{\frac{3}{2}}$ or $p = \frac{3}{2}$ (Not $2x\sqrt{x}$)	B1
	$-x$ or $-x^1$ or $q=1$	B1 (2)
(a)	1 st B1 for $p = 1.5$ or exact equivalent 2 nd B1 for $q = 1$	

Question 17: June 09 Q1

Question Number	Scheme	Mark	(S
Q (a)	$(3\sqrt{7})^2 = 63$ $(8+\sqrt{5})(2-\sqrt{5}) = 16-5+2\sqrt{5}-8\sqrt{5}$	B1 M1	(1)
	$=11, -6\sqrt{5}$	A1, A1	(3) [4]
(a) (b)	B1 for 63 only M1 for an attempt to expand their brackets with ≥ 3 terms correct. They may collect the $\sqrt{5}$ terms to get $16-5-6\sqrt{5}$ Allow $-\sqrt{5} \times \sqrt{5}$ or $-\left(\sqrt{5}\right)^2$ or $-\sqrt{25}$ instead of the -5 These 4 values may appear in a list or table but they should have minus signs included The next two marks should be awarded for the final answer but check that correct values follow from correct working. Do not use ISW rule 1^{st} A1 for 11 from $16-5$ or $-6\sqrt{5}$ from $-8\sqrt{5}+2\sqrt{5}$ 2^{nd} A1 for both 11 and $-6\sqrt{5}$. S.C - Double sign error in expansion For $16-5-2\sqrt{5}+8\sqrt{5}$ leading to $11+\ldots$ allow one mark		

Question 18: June 09 Q2

Question Number	Scheme	Marks
Q	$32 = 2^5$ or $2048 = 2^{11}$, $\sqrt{2} = 2^{1/2}$ or $\sqrt{2048} = (2048)^{\frac{1}{2}}$	B1, B1
	$a = \frac{11}{2}$ (or $5\frac{1}{2}$ or 5.5)	B1
	2 (2)	[3]
	$1^{st} B1$ for $32 = 2^5$ or $2048 = 2^{11}$	
	This should be explicitly seen: $32\sqrt{2} = 2^a$ followed by $2^5\sqrt{2} = 2^a$ is OK Even writing $32 \times 2 = 2^5 \times 2 \left(= 2^6\right)$ is OK but simply writing $32 \times 2 = 2^6$ is NOT	
	2^{nd} B1 for $2^{\frac{1}{2}}$ or $(2048)^{\frac{1}{2}}$ seen. This mark may be implied	
	3^{rd} B1 for answer as written. Need $a = \dots$ so $2^{\frac{11}{2}}$ is B0	
	$a = \frac{11}{2}$ (or $5\frac{1}{2}$ or 5.5) with no working scores full marks.	
	If $a = 5.5$ seen then award $3/3$ unless it is clear that the value follows from totally incorrect work.	
	Part solutions: e.g. $2^5\sqrt{2}$ scores the first B1.	
	Special case:	
	If $\sqrt{2} = 2^{\frac{1}{2}}$ is not explicitly seen, but the final answer includes $\frac{1}{2}$,	
	e.g. $a = 2\frac{1}{2}$, $a = 4\frac{1}{2}$, the second B1 is given by implication.	

Question 19: Jan 10 Q2

		5
(a) $(7 + \sqrt{5})(3 - \sqrt{5}) = 21 - 5 + 3\sqrt{5} - 7\sqrt{5}$ Expand to get 3 or 4 terms = 16, $-4\sqrt{5}$ (1 st A for 16, 2 nd A for $-4\sqrt{5}$) (i.s.w. if necessary, e.g. $16 - 4\sqrt{5} \rightarrow 4 - \sqrt{5}$)	M1 A1, A1	(3)
(b) $\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}$ (This is sufficient for the M mark)	M1	
Correct denominator without surds, i.e. 9-5 or 4	A1	
$4 - \sqrt{5}$ or $4 - 1\sqrt{5}$	A1	(3) [6]
(a) M1: Allowed for an attempt giving 3 or 4 terms, with at least 2 correct (even if unsimplified).		
e.g. 26 – 4√5 scores M1 A0 A1		
(b) Answer only: 4 - √5 scores full marks One term correct scores the M mark by implication,		
e.g. 4+√5 scores M1 A0 A0		
16 – √5 scores M1 A0 A0		
Ignore subsequent working, e.g. $4 - \sqrt{5}$ so $a = 4$, $b = 1$		
Note that, as always, A marks are dependent upon the preceding M mark, so that, for example, $\frac{7+\sqrt{5}}{\sqrt{1-5}} \times \frac{3+\sqrt{5}}{\sqrt{1-5}} = \frac{1}{1-5}$ is M0 A0.		
Alternative		
$(a+b\sqrt{5})(3+\sqrt{5})=7+\sqrt{5}$, then form simultaneous equations in a and b. M1		
Correct equations: $3a + 5b = 7$ and $3b + a = 1$ A1		
a=4 and $b=-1$ A1		
	$(1s.w. if necessary, e.g. 16-4\sqrt{5})$ $(1s.w. if necessary, e.g. 16-4\sqrt{5} \rightarrow 4-\sqrt{5})$ (b) $\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}$ (This is sufficient for the M mark) Correct denominator without surds, i.e. $9-5$ or 4 $4-\sqrt{5}$ or $4-1\sqrt{5}$ (a) M1: Allowed for an attempt giving 3 or 4 terms, with at least 2 correct (even if unsimplified). e.g. $21-\sqrt{5^2}+\sqrt{15}$ scores M1. Answer only: $16-4\sqrt{5}$ scores full marks One term correct scores the M mark by implication, e.g. $26-4\sqrt{5}$ scores M1 A0 A1 (b) Answer only: $4-\sqrt{5}$ scores full marks One term correct scores the M mark by implication, e.g. $4+\sqrt{5}$ scores M1 A0 A0 $16-\sqrt{5}$ scores M1 A0 A0 Ignore subsequent working, e.g. $4-\sqrt{5}$ so $a=4$, $b=1$ Note that, as always, A marks are dependent upon the preceding M mark, so that, for example, $\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3+\sqrt{5}}{3-\sqrt{5}} = \frac{\dots}{4}$ is M0 A0. Alternative $(a+b\sqrt{5})(3+\sqrt{5})=7+\sqrt{5}$, then form simultaneous equations in a and b . M1 Correct equations: $3a+5b=7$ and $3b+a=1$	$=16, -4\sqrt{5} \qquad (1^{st} \text{ A for } 16, 2^{nd} \text{ A for } -4\sqrt{5}) \qquad \text{A1, A1}$ $(i.s.w. \text{ if necessary, e.g. } 16-4\sqrt{5} \rightarrow 4-\sqrt{5})$ $(b) \frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}} \qquad (\text{This is sufficient for the M mark}) \qquad \text{M1}$ $\text{Correct denominator without surds, i.e. } 9-5 \text{ or } 4 \qquad \text{A1}$ $4-\sqrt{5} \text{ or } 4-1\sqrt{5} \qquad \text{A1}$ $(a) \text{ M1: Allowed for an attempt giving 3 or 4 terms, with at least 2 correct (even if unsimplified).}$ $e.g. \ 21-\sqrt{5^2}+\sqrt{15} \text{ scores M1.}$ $\text{Answer only: } 16-4\sqrt{5} \text{ scores full marks}$ $\text{One term correct scores the M mark by implication,}$ $e.g. \ 26-4\sqrt{5} \text{ scores M1 A0 A1}$ $(b) \text{ Answer only: } 4-\sqrt{5} \text{ scores full marks}$ $\text{One term correct scores the M mark by implication,}$ $e.g. \ 4+\sqrt{5} \text{ scores M1 A0 A0}$ $16-\sqrt{5} \text{ scores M1 A0 A0}$ $16-\sqrt{5} \text{ scores M1 A0 A0}$ $\text{Ignore subsequent working, e.g. } 4-\sqrt{5} \text{ so } a=4, \ b=1$ $\text{Note that, as always, A marks are dependent upon the preceding M mark,}$ so that, for example, $\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3+\sqrt{5}}{3-\sqrt{5}} = \frac{\dots \dots }{4} \text{ is M0 A0.}$ Alternative $(a+b\sqrt{5})(3+\sqrt{5})=7+\sqrt{5}, \text{ then form simultaneous equations in } a \text{ and } b. \text{ M1}$ $\text{Correct equations:} \qquad 3a+5b=7 \text{ and } 3b+a=1 \qquad \text{A1}$

Question 20: June 10 Q1

Question Number	Scheme	Marks
	$\left(\sqrt{75} - \sqrt{27}\right) = 5\sqrt{3} - 3\sqrt{3}$ $= 2\sqrt{3}$	M1
	= 2√3	A1 2
	Notes	
	M1 for $5\sqrt{3}$ from $\sqrt{75}$ or $3\sqrt{3}$ from $\sqrt{27}$ seen anywhere A1 for $2\sqrt{3}$; allow $\sqrt{12}$ or or $k=2, x=3$ allow $k=1, x=12$ Some Common errors $\sqrt{75} - \sqrt{27} = \sqrt{48}$ leading to $4\sqrt{3}$ is M0A0 $25\sqrt{3} - 9\sqrt{3} = 16\sqrt{3}$ is M0A0	

Question 21: Jan 11 Q1

Scheme	Marks
$16^{\frac{1}{4}} = 2 \text{or} \frac{1}{16^{\frac{1}{4}}} \text{or better}$	M1
$\left(16^{-\frac{1}{4}} = \right) \frac{1}{2} \text{ or } 0.5 \qquad \text{(ignore } \pm\text{)}$	A1
	(2)
$\left(2x^{-\frac{1}{4}}\right)^4 = 2^4 x^{-\frac{4}{4}} \text{or } \frac{2^4}{x^{\frac{4}{4}}} \text{or equivalent}$	M1
$x\left(2x^{-\frac{1}{4}}\right)^4 = 2^4 \text{ or } 16$	A1 cao
	(2) 4
Notes	
M1 for a correct statement dealing with the $\frac{1}{4}$ or the - power	
This may be awarded if 2 is seen or for reciprocal of their 16 ¹	
s.c ¹ / ₄ is M1 A0, also 2 ⁻¹ is M1 A0	
$\pm \frac{1}{2}$ is not penalised so M1 A1	
M1 for correct use of the power 4 on both the 2 and the x terms	
A1 for cancelling the x and simplifying to one of these two forms. Correct answers with no working get full marks	
	$16^{\frac{1}{4}} = 2 \text{ or } \frac{1}{16^{\frac{1}{4}}} \text{ or better}$ $\left(16^{-\frac{1}{4}} = \right) \frac{1}{2} \text{ or } 0.5 \qquad \text{(ignore } \pm\text{)}$ $\left(2x^{-\frac{1}{4}}\right)^4 = 2^4 x^{-\frac{4}{4}} \text{or } \frac{2^4}{x^{\frac{4}{4}}} \text{ or equivalent}$ $x \left(2x^{-\frac{1}{4}}\right)^4 = 2^4 \text{ or } 16$ $\frac{\text{Notes}}{2x^{-\frac{1}{4}}} = 2^4 \text{ or } 16$

Question 22: Jan 11 Q3

Question Number	Scheme	Marks
	$\frac{5-2\sqrt{3}}{\sqrt{3}-1} \times \frac{\left(\sqrt{3}+1\right)}{\left(\sqrt{3}+1\right)}$	M1
	$=\frac{\dots}{2}$ denominator of 2	A1
	Numerator = $5\sqrt{3} + 5 - 2\sqrt{3}\sqrt{3} - 2\sqrt{3}$	M1
	So $\frac{5-2\sqrt{3}}{\sqrt{3}-1} = -\frac{1}{2} + \frac{3}{2}\sqrt{3}$	A1
		4
	Alternative: $(p+q\sqrt{3})(\sqrt{3}-1)=5-2\sqrt{3}$, and form simultaneous	M1
	equations in p and q -p + 3q = 5 and $p - q = -2$	A1
	Solve simultaneous equations to give $p = -\frac{1}{2}$ and $q = \frac{3}{2}$.	M1 A1
	<u>Notes</u>	
	1 st M1 for multiplying numerator and denominator by same correct expression 1 st A1 for a correct denominator as a single number (NB depends on M mark) 2^{nd} M1 for an attempt to multiply the numerator by $(\sqrt{3}\pm1)$ and get 4 terms with at least 2	
	correct. 2^{nd} A1 for the answer as written or $p = -\frac{1}{2}$ and $q = \frac{3}{2}$. Allow -0.5 and 1.5	
	correct answer seen, then slip writing $p = q = 0$	1
	Answer only (very unlikely) is full marks if correct - no part marks	

Question 23: June 11 Q1

Question Number	Scheme	Marks
(a)	5 (or ±5)	B1 (1)
(b)	$25^{\frac{3}{2}} = \frac{1}{25^{\frac{3}{2}}} \text{ or } 25^{\frac{3}{2}} = 125 \text{ or better}$ $\frac{1}{125} \text{ or } 0.008 \qquad \text{(or } \pm \frac{1}{125} \text{)}$	M1
	$\frac{1}{125}$ or 0.008 (or $\pm \frac{1}{125}$)	A1
		(2)
	Notes	
	(a) Give B1 for 5 or ± 5 Anything else is B0 (including just -5) (b) M: Requires reciprocal OR $25^{\frac{3}{2}} = 125$ Accept $\frac{1}{5^{1}}$, $\frac{1}{\sqrt{15625}}$, $\frac{1}{25\sqrt{25}}$, $\frac{1}{\sqrt{25}^{3}}$ for M1	
	Correct answer with no working (or notation errors in working) score M1A0 for - $\frac{1}{125}$ without + $\frac{1}{125}$	s both marks i.e. M1 A1

Question 24: June 11 Q6

Question Number	Scheme	Marks
(a)	$p = \frac{1}{2}, \ q = 2$ or $6x^{\frac{1}{2}}, \ 3x^2$	B1, B1
		(2)
	Notes	
	(a) Accept any equivalent answers, e.g. $p = 0.5$, $q = 4/2$	·