Algebraic Expression - Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 05 Q1

Question 2: June 05 Q1

Question Number	Scheme		Marks	
(a)				(1)
(b)	$\begin{aligned} 8^{-\frac{2}{3}} & =\frac{1}{\sqrt[3]{64}} \text { or } \frac{1}{(a)^{2}} \text { or } \frac{1}{\sqrt[3]{8^{2}}} \text { or } \frac{1}{8^{\frac{2}{3}}} \\ & =\frac{1}{4} \text { or } 0.25 \end{aligned}$	Allow \pm	M1 A1	(2)
(b)	M1 for understanding that "-" power means reciprocal $8^{\frac{2}{3}}=4$ is M0A0 and $-\frac{1}{4}$ is M1A0			

Question 3: June 05 Q7

Question Number	Scheme	Marks
(a)	$(3-\sqrt{x})^{2}=9-6 \sqrt{x}+x$ $\div b y \sqrt{x} \rightarrow 9 x^{-\frac{1}{2}}-6+x^{\frac{1}{2}}$	M1
(a)	M1 Attempt to multiply out $(3-\sqrt{x})^{2}$. Must have 3 or 4 terms, allow one sign error A1 cso Fully correct solution to printed answer. Penalise wrong working.	

Question 4: Jan 06 Q1

Question number	Scheme	Marks
	$\begin{array}{ll} x\left(x^{2}-4 x+3\right) & \text { Factor of } x . \text { (Allow }(x-0)) \\ =x(x-3)(x-1) & \text { Factorise } 3 \text { term quadratic } \tag{3} \end{array}$	M1 M1 A1 Total 3 marks
	Alternative:	
	$\left(x^{2}-3 x\right)(x-1)$ or $\left(x^{2}-x\right)(x-3)$ scores the second M1 (allow \pm for each sign), then $x(x-3)(x-1)$ scores the first M 1 , and A 1 if correct. Alternative: Finding factor $(x-1)$ or $(x-3)$ by the factor theorem scores the second M1, then completing, using factor x, scores the first M1, and A1 if correct. Factors "split": e.g. $x\left(x^{2}-4 x+3\right) \Rightarrow(x-3)(x-1)$. Allow full marks. Factor x not seen: e.g. Dividing by $x \Rightarrow(x-3)(x-1)$. M0 M1 A0. If an equation is solved, i.s.w.	

Question 5: Jan 06 Q5

Question 6: June 06 Q6

Question number	Scheme	Marks
(a) (b)	$\begin{aligned} & 16+4 \sqrt{3}-4 \sqrt{3}-(\sqrt{3})^{2} \text { or } 16-3 \\ & =13 \\ & \frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}} \end{aligned}$ $=\frac{26(4-\sqrt{3})}{13}=\underline{8-2 \sqrt{3}} \quad$ or $\quad 8+(-2) \sqrt{3} \quad$ or $\quad a=8$ and $b=-2$	M1 Alc.a.o (2) M1 A1 (2) 4
(a) (b)	M1 For 4 terms, at least 3 correct e.g. $8+4 \sqrt{3}-4 \sqrt{3}-(\sqrt{3})^{2}$ or $16 \pm 8 \sqrt{3}-(\sqrt{3})^{2}$ or $16+3$ 4^{2} instead of 16 is OK $(4+\sqrt{3})(4+\sqrt{3})$ scores M0A0 M1 For a correct attempt to rationalise the denominator Can be implied NB $\frac{-4+\sqrt{3}}{-4+\sqrt{3}}$ is OK	

Question 7: June 06 Q9

Question number	Scheme ${ }^{\text {a }}$ Marks
(a) (b) (c)	
(a) (b) (c)	M1 for a correct method to get the factor of $x . \quad x$ (as printed is the minimum. $1^{\text {st }} \mathrm{A} 1$ for $b=-8$ or $c=15$. -8 comes from -6-2 and must be coefficient of x, and 15 from $6 \times 2+3$ and must have no x s. $2^{\text {nd }} \mathrm{Al}$ for $a=1, b=-8$ and $c=15$. Must have $x\left(x^{2}-8 x+15\right)$. M1 for attempt to factorise their $3 T Q$ from part (a). A1 for all 3 terms correct. They must include the x. For part (c) they must have at most 2 non-zero roots of their $\mathrm{f}(x)=0$ to ft their 3 and their 5 . $1^{\text {st }}$ B1 for correct shape (i.e. from bottom left to top right and two turning points.) $2^{\text {nd }}$ B1f.t. for crossing at their 3 or their 5 indicated on graph or in text. $3^{\text {rd }}$ B1f.t. if graph passes through $(0,0)$ [needn't be marked] and both their 3 and their 5 .

Question 8: Jan 07 Q2

Question	Scheme	Marks
	(a) $6 \sqrt{ } 3$ $(a=6)$ (b) Expanding $(2-\sqrt{ } 3)^{2}$ to get 3 or 4 separate terms 7, $-4 \sqrt{ } 3$ $(b=7, c=-4)$	B1 M1 A1, A1
	(a) $\pm 6 \sqrt{ } 3$ also scores B1. (b) M1: The 3 or 4 terms may be wrong. $1^{\text {st }} \mathrm{A} 1$ for $7,2^{\text {nd }} \mathrm{A} 1$ for $-4 \sqrt{ } 3$. Correct answer $7-4 \sqrt{ } 3$ with no working scores all 3 marks. $7+4 \sqrt{ } 3$ with or without working scores M1 A1 A0. Other wrong answers with no working score no marks.	

Question 9: June 07 Q1

Question 10: June 07 Q2

Question	Scheme	Marks
	(a) Attempt $\sqrt[3]{8}$ or $\sqrt[3]{\left(8^{4}\right)}$ $=\underline{16}$ (b) $5 x^{\frac{1}{3}}$ $5, x^{\frac{1}{3}}$	$\begin{array}{ll}\text { M1 } \\ \text { A1 } \\ \text { B1, B1 } & \\ & \text { (2) } \\ & 4\end{array}$
(a)	M1 for: 2 (on its own) or $\left(2^{3}\right)^{\frac{4}{3}}$ or $\sqrt[3]{8}$ or $(\sqrt[3]{8})^{4}$ or 2^{4} or $\sqrt[3]{8^{4}}$ or $\sqrt[3]{4096}$ 8^{3} or 512 or $(4096)^{\frac{1}{5}}$ is M0 A1 for 16 only $1^{\text {st }} \mathrm{B} 1$ for 5 on its own or \times something. So e.g. $\frac{5 x^{\frac{4}{3}}}{x}$ is B1 But $5^{\frac{1}{3}}$ is B0 An expression showing cancelling is not sufficient (see first expression of QC0184500123945 the mark is scored for the second expression) $2^{\text {nd }}$ B1 for $x^{\frac{1}{3}}$ Can use ISW (incorrect subsequent working) e.g $5 x^{\frac{4}{3}}$ scores B1B0 but it may lead to $\sqrt[3]{5 x^{4}}$ which we ignore as ISW. Correct answers only score full marks in both parts.	
(b)		

Question 11: Jan 08 Q2

Question	Scheme		
	(a) 2 (b) x^{9} seen, or $(\text { answer to }(\mathrm{a}))^{3}$ seen, or $\left(2 x^{3}\right)^{3}$ seen. $8 x^{9}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	(1) (2)
	(b) M: Look for x^{9} first... if seen, this is M1. If not seen, look for (answer to (a) $)^{3}$, e.g. $2^{3} \ldots$ this would score M1 even if it does not subsequently become 8 . (Similarly for other answers to (a)). In $\left(2 x^{3}\right)^{3}$, the 2^{3} is implied, so this scores the M mark. Negative answers: (a) Allow -2 . Allow ± 2. Allow ' 2 or -2 '. (b) Allow $\pm 8 x^{9}$. Allow ' $8 x^{9}$ or $-8 x^{9}$. N.B. If part (a) is wrong, it is possible to 'restart' in part (b) and to score full marks in part (b).		

Question 12: Jan 08 Q3

Question 13: June 08 Q2

Question Number	Scheme	Marks
	$x\left(x^{2}-9\right)$ or $(x \pm 0)\left(x^{2}-9\right)$ or $(x-3)\left(x^{2}+3 x\right)$ or $(x+3)\left(x^{2}-3 x\right)$	B1
	$x(x-3)(x+3)$	M1 A1 (3)
(3 marks)		

Question 14: Jan 09 Q1

Question Number	Scheme	Marks
(a) (b)	5 (± 5 is B 0)	M1 A1 (2) [3]
(b)	M1 follow through their value of 5. Must have reciprocal and square. 5^{-2} is not sufficient to score this mark, unless $\frac{1}{5^{2}}$ follows this. A negative introduced at any stage can score the M1 but not the A1, e.g. $125^{-2 / 3}=\left(-\frac{1}{5}\right)^{2}=\frac{1}{25} \quad$ scores M1 A0 $125^{-2 / 3}=-\left(\frac{1}{5}\right)^{2}=-\frac{1}{25} \quad \text { scores M1 A0. }$ Correct answer with no working scores both marks. Alternative: $\frac{1}{\sqrt[3]{125^{2}}}$ or $\frac{1}{\left(125^{2}\right)^{1 / 3}}$ M1 (reciprocal and the correct number squared) $\begin{aligned} (& \left.=\frac{1}{\sqrt[3]{15625}}\right) \\ & =\frac{1}{25} \quad \text { A1 } \end{aligned}$	

Question 15: Jan 09 Q3

Question Number	Scheme	Marks
	$\sqrt{7}^{2}+2 \sqrt{7}-2 \sqrt{7}-2^{2}$, or $7-4$ or an exact equivalent such as $\sqrt{49}-2^{2}$ $=3$	M1 A1 [2]
	M1 for an expanded expression. At worst, there can be one wrong term and one wrong sign, or two wrong signs. $\begin{aligned} & \text { e.g. } 7+2 \sqrt{7}-2 \sqrt{7}-2 \text { is M1 (one wrong term }-2 \text {) } \\ & 7+2 \sqrt{7}+2 \sqrt{7}+4 \text { is M1 (two wrong signs }+2 \sqrt{7} \text { and }+4 \text {) } \\ & 7+2 \sqrt{7}+2 \sqrt{7}+2 \text { is M1 (one wrong term }+2 \text {, one wrong sign }+2 \sqrt{7} \text {) } \\ & \sqrt{7}+2 \sqrt{7}-2 \sqrt{7}+4 \text { is M1 (one wrong term } \sqrt{7} \text {, one wrong sign + 4) } \\ & \sqrt{7}+2 \sqrt{7}-2 \sqrt{7}-2 \text { is M0 (two wrong terms } \sqrt{7} \text { and }-2 \text {) } \\ & 7+\sqrt{14}-\sqrt{14}-4 \text { is M0 (two wrong terms } \sqrt{14} \text { and }-\sqrt{14} \text {) } \end{aligned}$ If only 2 terms are given, they must be correct, i.e. $(7-4)$ or an equivalent unsimplified version to score M1. The terms can be seen separately for the M1. Correct answer with no working scores both marks.	

Question 16: Jan 09 Q6

Question Number	Scheme	Marks
(a)	$\begin{array}{lll} 2 x^{3 / 2} & \text { or } p=\frac{3}{2} & \text { (Not } 2 x \sqrt{x} \text {) } \\ -x \text { or }-x^{1} \text { or } q=1 & \tag{2} \end{array}$	B1 B1
(a)	$\begin{array}{ll} 1^{\text {st }} \mathrm{B} 1 & \text { for } p=1.5 \text { or exact equivalent } \\ 2^{\text {nd }} \mathrm{B} 1 & \text { for } q=1 \end{array}$	

Question 17: June 09 Q1

Question Number	Scheme	Marks
	$\begin{aligned} & (3 \sqrt{7})^{2}=63 \\ & (8+\sqrt{5})(2-\sqrt{5})=16-5+2 \sqrt{ } 5-8 \sqrt{ } 5 \\ & \quad=11,-6 \sqrt{5} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1, A1 } \end{aligned}$
		(3) [4]
(a) (b)	B1 for 63 only M1 for an attempt to expand their brackets with ≥ 3 terms correct. They may collect the $\sqrt{5}$ terms to get $16-5-6 \sqrt{5}$ Allow $-\sqrt{5} \times \sqrt{5}$ or $-(\sqrt{5})^{2}$ or $-\sqrt{25}$ instead of the -5 These 4 values may appear in a list or table but they should have minus signs included The next two marks should be awarded for the final answer but check that correct values follow from correct working. Do not use ISW rule $1^{\text {st }}$ A1 for 11 from $16-5$ or $-6 \sqrt{5}$ from $-8 \sqrt{5}+2 \sqrt{5}$ $2^{\text {nd }}$ A1 for both 11 and $-6 \sqrt{5}$. S.C - Double sign error in expansion For $16-5-2 \sqrt{5}+8 \sqrt{5}$ leading to $11+\ldots$ allow one mark	

Question 18: June 09 Q2

Question Number	Scheme	Marks
Q	$\begin{aligned} & 32=2^{5} \text { or } 2048=2^{11}, \quad \sqrt{2}=2^{1 / 2} \text { or } \quad \sqrt{2048}=(2048)^{\frac{1}{2}} \\ & a=\frac{11}{2} \quad\left(\text { or } 5 \frac{1}{2} \text { or } 5.5\right) \end{aligned}$	B1, B1 B1 [3]
	$1^{3 t} \mathrm{~B} 1$ for $32=2^{5}$ or $2048=2^{11}$ This should be explicitly seen: $32 \sqrt{2}=2^{a}$ followed by $2^{5} \sqrt{2}=2^{a}$ is OK Even writing $32 \times 2=2^{5} \times 2\left(=2^{6}\right)$ is OK but simply writing $32 \times 2=2^{6}$ is NOT $2^{\text {nd }} \mathrm{B} 1$ for $2^{\frac{1}{2}}$ or $(2048)^{\frac{1}{2}}$ seen. This mark may be implied $3^{\text {rd }} \mathrm{B} 1$ for answer as written. Need $a=\ldots$ so $2^{\frac{11}{2}}$ is B0 $a=\frac{11}{2}\left(\right.$ or $5 \frac{1}{2}$ or 5.5$)$ with no working scores full marks. If $a=5.5$ seen then award $3 / 3$ unless it is clear that the value follows from totally incorrect work. Part solutions: e.g. $2^{5} \sqrt{2}$ scores the first B1. Special case: If $\sqrt{2}=2^{1 / 2}$ is not explicitly seen, but the final answer includes $\frac{1}{2}$, e.g. $a=2 \frac{1}{2}, a=4 \frac{1}{2}$, the second B 1 is given by implication.	

Question 19: Jan 10 Q2

Question number	Scheme	Marks
	$\begin{align*} \text { (a) } \begin{aligned} (7+\sqrt{ } 5)(3-\sqrt{5})=21-5+ & 3 \sqrt{ } 5-7 \sqrt{ } 5 \quad \text { Expand to get } 3 \text { or } 4 \text { terms } \\ =16,-4 \sqrt{ } 5 & \left(1^{\text {th }} \mathrm{A} \text { for } 16, \quad 2^{\text {nd }} \mathrm{A} \text { for }-4 \sqrt{ } 5\right) \\ & \text { (i.s.w. if necessary, e.g. } 16-4 \sqrt{ } 5 \rightarrow 4-\sqrt{ } 5) \end{aligned} \end{align*}$	M1 A1, A1
	(b) $\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}$ (This is sufficient for the M mark) Correct denominator without surds, i.e. $9-5$ or 4 $4-\sqrt{5}$ or $4-1 \sqrt{5}$	M1 A1 A1 (3) [6]
	(a) M1: Allowed for an attempt giving 3 or 4 terms, with at least 2 correct (even if unsimplified). e.g. $21-\sqrt{5^{2}}+\sqrt{15}$ scores M1. Answer only: $16-4 \sqrt{ } 5$ scores full marks One term correct scores the M mark by implication, e.g. $26-4 \sqrt{ } 5$ scores M1 A0 A1 (b) Answer only: $4-\sqrt{5}$ scores full marks One term correct scores the M mark by implication, e.g. $4+\sqrt{ } 5$ scores M1 A0 A0 $16-\sqrt{5}$ scores M1 A0 A0 Ignore subsequent working, e.g. $4-\sqrt{5}$ so $a=4, b=1$ Note that, as always, A marks are dependent upon the preceding M mark, so that, for example, $\frac{7+\sqrt{ } 5}{3+\sqrt{5}} \times \frac{3+\sqrt{5}}{3-\sqrt{5}}=\frac{\cdots \ldots \text {.... }}{4}$ is M0 A0. Alternative $(a+b \sqrt{ } 5)(3+\sqrt{ } 5)=7+\sqrt{ } 5$, then form simultaneous equations in a and b. M1 Correct equations: $\begin{array}{cccc} 3 a+5 b=7 & \text { and } & 3 b+a=1 & \text { A1 } \\ a=4 & \text { and } & b=-1 & \text { A1 } \end{array}$	

Question 20: June 10 Q1

Question 21: Jan 11 Q1

Question Number	Scheme	Marks
(a)	$\begin{aligned} & 16^{\frac{1}{4}}=2 \text { or } \frac{1}{16^{\frac{1}{4}}} \text { or better } \\ & \qquad\left(16^{-\frac{1}{4}}=\right) \frac{1}{2} \text { or } 0.5 \end{aligned}$	M1 A1
(b)	$\left(2 x^{-\frac{1}{4}}\right)^{4}=2^{4} x^{\frac{-4}{4}}$ or $\frac{2^{4}}{x^{\frac{4}{4}}}$ or equivalent $x\left(2 x^{-\frac{1}{4}}\right)^{4}=2^{4} \text { or } 16$	M1 A1 cao
	Notes	
(a)	M1 for a correct statement dealing with the $\frac{1}{4}$ or the - power This may be awarded if 2 is seen or for reciprocal of their $16^{\frac{1}{4}}$ s.c $1 / 4$ is M1 A0, also 2^{-1} is M1 A0 $\pm \frac{1}{2}$ is not penalised so M1 A1 M1 for correct use of the power 4 on both the 2 and the x terms A1 for cancelling the x and simplifying to one of these two forms. Correct answers with no working get full marks	

Question 22: Jan 11 Q3

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline \& $$
\begin{aligned}
& \frac{5-2 \sqrt{3}}{\sqrt{3}-1} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)} \\
& =\frac{\cdots}{2} \quad \text { denominator of } 2 \\
& \text { Numerator }=5 \sqrt{3}+5-2 \sqrt{3} \sqrt{3}-2 \sqrt{3} \\
& \text { So } \frac{5-2 \sqrt{3}}{\sqrt{3}-1}=-\frac{1}{2}+\frac{3}{2} \sqrt{3}
\end{aligned}
$$ \& M1
A1

M1

A1

\hline \& | Alternative: $(p+q \sqrt{3})(\sqrt{3}-1)=5-2 \sqrt{3}$, and form simultaneous equations in p and q $-p+3 q=5 \text { and } p-q=-2$ |
| :--- |
| Solve simultaneous equations to give $p=-\frac{1}{2}$ and $q=\frac{3}{2}$. | \& | M1 |
| :--- |
| A1 |
| M1 A1 |

\hline \& Notes \&

\hline \& \multicolumn{2}{|l|}{| $1^{\text {st }} \mathrm{M} 1$ for multiplying numerator and denominator by same correct expression |
| :--- |
| $1^{\text {st }}$ A1 for a correct denominator as a single number (NB depends on M mark) |
| $2^{\text {nd }}$ M1 for an attempt to multiply the numerator by $(\sqrt{3} \pm 1)$ and get 4 terms with at least 2 correct. |
| $2^{\text {nd }} \mathrm{A} 1$ for the answer as written or $p=-\frac{1}{2}$ and $q=\frac{3}{2}$. Allow -0.5 and 1.5 . (Apply isw if correct answer seen, then slip writing $p=, q=$) |}

\hline \& Answer only (very unlikely) is full marks if correct - no part marks \&

\hline
\end{tabular}

Question 23: June 11 Q1

Question Number	Scheme	Marks
(a)	$5 \quad($ or $\pm 5)$	B1 (1)
(b)	$25^{\frac{3}{2}}=\frac{1}{25^{\frac{3}{2}}}$ or $25^{\frac{3}{2}}=125$ or better $\frac{1}{125} \text { or } 0.008 \quad\left(\text { or } \pm \frac{1}{125}\right)$	M1 A1
	Notes (a) Give B1 for 5 or ± 5 Anything else is B0 (including just -5) (b) M: Requires reciprocal OR $25^{\frac{3}{2}}=125$ Accept $\frac{1}{5}, \frac{1}{\sqrt{15625}}, \frac{1}{236}, \frac{1}{25 \sqrt{25}}, \frac{1}{\sqrt{33}}$ for M1 Correct answer with no working (or notation errors in working) scores both marks M1A0 for $-\frac{1}{125}$ without $+\frac{1}{125}$	i.e. M1 A1

Question 24: June 11 Q6

Question Number	Scheme	Marks
(a)	$p=\frac{1}{2}, q=2$ or $6 x^{\frac{1}{2}}, 3 x^{2}$	B1, B1
	Notes	
	(a) Accept any equivalent answers, e.g. $p=0.5, q=4 / 2$	

