Algebraic Methods - Edexcel Past Exam Questions MARK SCHEME

Question 1: June 05 Q3

Question number	Scheme	Marks	
	(a) Attempt to evaluate f(-4) or f(4)	M1	
	$f(-4) = 2(-4)^3 + (-4)^2 - 25(-4) + 12$ (= 128 + 16 + 100 + 12) = 0, so is a factor.	A1	(2)
	(b) $(x+4)(2x^2-7x+3)$	M1 A1	
	(2 $x - 1$)($x - 3$)	M1 A1	(4)
			6
	(b) First M requires $(2x^2 + ax + b)$, $a \ne 0$, $b \ne 0$.		
	Second M for the attempt to factorise the quadratic.		
	Alternative: $(x+4)(2x^2 + ax + b) = 2x^3 + (8+a)x^2 + (4a+b)x + 4b = 0, \text{ then compare coefficients to find } \underbrace{\text{values of } a \text{ and } b.}_{a=-7, b=3} [\text{A1}]$		
	Alternative: Factor theorem: Finding that $f\left(\frac{1}{2}\right) = 0$, $\therefore (2x-1)$ is a factor [M1, A1]		
	n.b. Finding that $f\left(\frac{1}{2}\right) = 0$, $\therefore (x - \frac{1}{2})$ is a factor scores M1, A0 ,unless the		
	factor 2 subsequently appears.		
	Finding that $f(3) = 0$, $\therefore (x-3)$ is a factor [M1, A1]		

Question 2: Jan 06 Q1

Question number	Scheme	Marks	
	(a) $2+1-5+c=0$ or $-2+c=0$	M1	
	c=2	A1	(2)
	(b) $f(x) = (x-1)(2x^2+3x-2)$ $(x-1)$	B1	
	division	M1	
	$= \dots \ (2x-1)(x+2)$	M1 A1	(4)
	(c) $f\left(\frac{3}{2}\right) = 2 \times \frac{27}{8} + \frac{9}{4} - \frac{15}{2} + c$	M1	
	Remainder = $c + 1.5$ = $\underline{3.5}$ ft their c	A1ft	(2)
			8
	(a) M1 for evidence of substituting $x = 1$ leading to linear equation in c		
	(b) B1 for identifying $(x-1)$ as a factor		
	1 st M1 for attempting to divide.		
	Other factor must be at least $(2x^2 + \text{ one other term})$		
	2 nd M1 for attempting to factorise a quadratic resulting from attempted divis	sion	
	A1 for just $(2x-1)(x+2)$.		
	(c) M1 for attempting $f(\pm \frac{3}{2})$. If not implied by $1.5 + c$, we must see some		
	substitution of $\pm \frac{3}{2}$.		
	A1 follow through their c only, but it must be a number.		

Question 3: June 06 Q4

Question number	Scheme	Marks	
	(a) $f(-2) = 2(-2)^3 + 3(-2)^2 - 29(-2) - 60$ M: Attempt $f(2)$ or $f(-2)$	M1	
	= -16 + 12 + 58 - 60 = -6	A1	(2)
	(b) $f(-3) = 2(-3)^3 + 3(-3)^2 - 29(-3) - 60$ M: Attempt $f(3)$ or $f(-3)$	M1	
	(=-54+27+87-60) = 0 : $(x+3)$ is a factor	A1	(2)
	(c) $(x+3)(2x^2-3x-20)$	M1 A1	
	= (x+3)(2x+5)(x-4)	M1 A1	(4)
			8
	Divide by $(x + 2)$ to get $(2x^2 + ax + b)$, $a \ne 0$, $b \ne 0$. [M1] $(2x^2 - x - 27)$, remainder = -6 [A1] (b) A1 requires zero and a simple conclusion (even just a tick, or Q.E.D.). (c) First M requires division by $(x + 3)$ to get $(2x^2 + ax + b)$, $a \ne 0$, $b \ne 0$. Second M for the attempt to factorise their quadratic. Usual rule: $(2x^2 + ax + b) = (2x + c)(x + d)$, where $ cd = b $. Alternative (first 2 marks): $(x + 3)(2x^2 + ax + b) = 2x^3 + (6 + a)x^2 + (3a + b)x + 3b = 0$, then compare coefficients to find values of a and b . [M1]		
	$a = -3$, $b = -20$ [A1] Alternative: Factor theorem: Finding that $f\left(-\frac{5}{2}\right) = 0$: factor is, $(2x + 5)$ [M1, A1] Finding that $f(4) = 0$: factor is, $(x - 4)$ [M1, A1] "Combining" all 3 factors is <u>not</u> required.		
	If just one of these is found, score the <u>first 2 marks</u> M1 A1 M0 A0. <u>Losing a factor of 2:</u> $(x+3)\left(x+\frac{5}{2}\right)(x-4)$ scores M1 A1 M1 A0.		
	Answer only, one sign wrong: e.g. $(x+3)(2x-5)(x-4)$ scores M1 A1 M1 A0.		

Question 4: Jan 07 Q5

Question Number	Scheme	Marks
(a)	$f(-2) = (-2)^3 + 4(-2)^2 + (-2) - 6$ $\{ = -8 + 16 - 2 - 6 \}$	M1
(b)	$= 0, \therefore x + 2 \text{ is a factor}$ $x^3 + 4x^2 + x - 6 = (x + 2)(x^2 + 2x - 3)$	A1 (2) M1, A1
(c)	= (x+2)(x+3)(x-1) $-3, -2, 1$	M1, A1 (4) B1 (1) (7)

Question 5: June 07 Q2

Question number	Scheme	Marks	
	f(2) = 24 - 20 - 32 + 12 = -16 (M: Attempt $f(2)$ or $f(-2)$)	M1 A1	(2)
	(If continues to say 'remainder = 16', isw)		
	Answer must be seen in part (a), not part (b).		
	$(x+2)(3x^2-11x+6)$	M1 A1	
	(x+2)(3x-2)(x-3)	M1 A1	(4)
	(If continues to 'solve an equation', isw)		
			6
	(a) Answer only (if correct) scores both marks. (16 as 'answer only' is M0 A0).		
	Alternative (long division):		
	Divide by $(x-2)$ to get $(3x^2 + ax + b)$, $a \ne 0, b \ne 0$. [M1] $(3x^2 + x - 14)$, and -16 seen. [A1]		
	$(3x^2 + x - 14)$, and – 16 seen. [A1] (If continues to say 'remainder = 16', isw)		
	 (b) First M requires division by (x + 2) to get (3x² + ax + b), a ≠ 0, b ≠ 0. Second M for attempt to factorise their quadratic, even if wrongly obtained, perhaps with a remainder from their division. Usual rule: (kx² + ax + b) = (px + c)(qx + d), where pq = k and cd = b . Just solving their quadratic by the formula is M0. 		
	"Combining" all 3 factors is <u>not</u> required.		
	Alternative (first 2 marks): $(x+2)(3x^2 + ax + b) = 3x^3 + (6+a)x^2 + (2a+b)x + 2b = 0$, then compare coefficients to find values of a and b. [M1] a = -11, $b = 6$ [A1]		
	Alternative: Factor theorem: Finding that $f(3) = 0$: factor is, $(x-3)$ [M1, A1]		
	Finding that $f\left(\frac{2}{3}\right) = 0$: factor is, $(3x-2)$ [M1, A1]		
	If just one of these is found, score the <u>first 2 marks</u> M1 A1 M0 A0.		
	Losing a factor of 3: $(x+2)\left(x-\frac{2}{3}\right)(x-3)$ scores M1 A1 M1 A0.		
	Answer only, one sign wrong: e.g. $(x+2)(3x-2)(x+3)$ scores M1 A1 M1 A0.		

Question 6: June 08 Q1

Question number	Scheme	Marks	
	(a) Attempt to find $f(-4)$ or $f(4)$. $\left(f(-4) = 2(-4)^3 - 3(-4)^2 - 39(-4) + 20\right)$ so $(x+4)$ is a factor.	M1 A1	(2
	(b) $2x^3 - 3x^2 - 39x + 20 = (x+4)(2x^2 - 11x + 5)$	M1 A1	
	(2x-1)(x-5) (The 3 brackets need not be written together) or $\left(x-\frac{1}{2}\right)(2x-10)$ or equivalent	M1 A1cso	(4
	(a) Long division scores no marks in part (a). The <u>factor theorem</u> is required. However, the first two marks in (b) can be earned from division seen in (a) but if a different long division result is seen in (b), the work seen in (b) takes precedence for marks in (b).		6
	A1 requires zero and a simple <u>conclusion</u> (even just a tick, or Q.E.D.), or may be scored by a <u>preamble</u> , e.g. 'If $f(-4) = 0$, $(x + 4)$ is a factor'		
	 (b) First M requires use of (x + 4) to obtain (2x² + ax + b), a ≠ 0, b ≠ 0, even with a remainder. Working need not be seen this could be done 'by inspection'. Second M for the attempt to factorise their three-term quadratic. Usual rule: (kx² + ax + b) = (px + c)(qx + d), where cd = b and pq = k . If 'solutions' appear before or after factorisation, ignore but factors must be seen to score the second M mark. 		
	Alternative (first 2 marks): $(x+4)(2x^2+ax+b) = 2x^3 + (8+a)x^2 + (4a+b)x + 4b = 0$, then compare coefficients to find values of a and b. [M1] a = -11, $b = 5$ [A1]		
	Alternative: Factor theorem: Finding that $f\left(\frac{1}{2}\right) = 0$: factor is, $(2x - 1)$ [M1, A1]		
	Finding that $f(5) = 0$: factor is, $(x-5)$ [M1, A1] "Combining" all 3 factors is <u>not</u> required. If just one of these is found, score the <u>first 2 marks</u> M1 A1 M0 A0. Losing a factor of 2: $(x+4)\left(x-\frac{1}{2}\right)(x-5)$ scores M1 A1 M1 A0. Answer only, one sign wrong: e.g. $(x+4)(2x-1)(x+5)$ scores M1 A1 M1 A0		

Question 7: June 10 Q2

Question Number	Scheme	Marks	
	(a) Attempting to find $f(3)$ or $f(-3)$	M1	
	$f(3) = 3(3)^3 - 5(3)^2 - (58 \times 3) + 40 = 81 - 45 - 174 + 40 = -98$	A1	(2)
	(b) ${3x^3 - 5x^2 - 58x + 40 = (x - 5)}$ $(3x^2 + 10x - 8)$	M1 A1	
	Attempt to <u>factorise</u> 3-term quadratic, or to use the quadratic formula (see general principles at beginning of scheme). This mark may be implied by the correct solutions to the quadratic.	M1	
	$(3x-2)(x+4) = 0$ $x = \dots$ or $x = \frac{-10 \pm \sqrt{100 + 96}}{6}$	A1 ft	
	$\frac{2}{3}$ (or exact equiv.), -4, 5 (Allow 'implicit' solns, e.g. $f(5) = 0$, etc.)	A1	(5)
	Completely correct solutions without working: full marks.		7

(a) Alternative (long division): Divide by (x-3) to get $(3x^2 + ax + b)$, $a \ne 0, b \ne 0$. [M1] 'Grid' method 3 3 -5 -58

 $(3x^2 + 4x - 46)$, and -98 seen. [A1]

3 3 -5 -58 40 0 9 12 -138 3 4 -46 -98

40

(If continues to say 'remainder = 98', isw)

(b) 1st M requires use of (x-5) to obtain $(3x^2 + ax + b)$, $a \ne 0$, $b \ne 0$.

(Working need not be seen... this could be done 'by inspection'.)

(Srid' method 3 | 3 -5 -58 | 0 15 50

 2^{nd} M for the attempt to <u>factorise</u> their 3-term quadratic, or to solve it using the quadratic formula. Factorisation: $(3x^2 + ax + b) = (3x + c)(x + d)$, where |cd| = |b|.

A1ft: Correct factors for their 3-term quadratic <u>followed by a solution</u> (at least one value, which might be incorrect), <u>or</u> numerically correct expression from the quadratic formula for their 3-term quadratic.

Note therefore that if the quadratic is correctly factorised but no solutions are given, the last 2 marks will be lost.

Alternative (first 2 marks):

$$(x-5)(3x^2+ax+b) = 3x^3 + (a-15)x^2 + (b-5a)x - 5b = 0,$$

then compare coefficients to find values of a and b. [M1]

$$a = 10, b = -8$$
 [A1]

Question 18: June 11 Q1

Question Number	Sche	me	Marks		
Number	$f(x) = 2x^3 - 7x^2 - 5x + 4$				
(a)	Remainder = $f(1) = 2 - 7 - 5 + 4 = -6$ = -6	Attempts $f(1)$ or $f(-1)$.	M1 A1 [2]		
	21 22 27 23 27 22 27 22 2	Attempts f(-1).	M1		
(b)	$f(-1) = 2(-1)^3 - 7(-1)^2 - 5(-1) + 4$ and so $(x + 1)$ is a factor.	f(-1) = 0 with no sign or substitution errors and for conclusion.	A1 [2]		
(c)	$f(x) = \{(x+1)\}(2x^2 - 9x + 4)$		M1 A1		
	=(x+1)(2x-1)(x-4)		dM1 A1		
	(Note: Ignore the ePEN notation of (b) (should b	ne (c)) for the final three marks in this part).	[4		
(a)	M1 for attempting either $f(1)$ or $f(-1)$. Can be	implied. Only one slip permitted.			
	M1 can also be given for an attempt (at least two remainder which is independent of x. A1 can be working. Award A0 for a candidate who finds – Award M1A1 for – 6 without any working.	given also for -6 seen at the bottom of long divided but then states that the remainder is 6.	ision		
(b)	M1: attempting only $f(-1)$. A1: must correctly show $f(-1) = 0$ and give a conclusion in part (b) only Note: Stating "hence factor" or "it is a factor" or a "tick" or "QED" is fine for the conclusion. Note also that a conclusion can be implied from a preamble, eg: "If $f(-1) = 0$, $(x + 1)$ is a factor"				
(c)	Note: Long division scores no marks in part (l 1st M1: Attempts long division or other method,		ainder.		
	Working need not be seen as this could be done "by inspection." $(2x^2 \pm ax \pm b)$ must be seen in part (c) only. Award 1st M0 if the quadratic factor is clearly found from dividing $f(x)$ by $(x-1)$. Eg. Some				
	candidates use their $(2x^2 - 5x - 10)$ in part (c) found from applying a long division method in part (a).				
	1 st A1: For seeing $(2x^2 - 9x + 4)$.				
	2 nd dM1: Factorises a 3 term quadratic. (see rule previous method mark being awarded. This mark quadratic formula correctly. 2 nd A1: is cao and needs all three factors on one quadratic equation.)	can also be awarded if the candidate applies the			
	Note: Some candidates will go from $\{(x+1)\}(2x^2-9x+4)$ to $\{x=-1\}$, $x=\frac{1}{2}$, 4, and not list all three				
	factors. Award these responses M1A1M1A0.				
	Alternative: 1 st M1: For finding either $f(4) = 0$ or $f(\frac{1}{2}) = 0$.				
	1^{3} A1: A second correct factor of usually $(x-4)$ or $(2x-1)$ found. Note that any one of the other correct				
	factors found would imply the 1 st M1 mark. 2^{nd} dM1: For using two known factors to find the third factor, usually $(2x \pm 1)$. 2^{nd} A1 for correct answer of $(x + 1)(2x - 1)(x - 4)$.				
	Alternative: (for the first two marks)				
	1st M1: Expands $(x+1)(2x^2+ax+b)$ {giving $2x^3+(a+2)x^2+(b+a)x+b$ } then compare				
	coefficients to find values for a and b. 1st A				
	Not dealing with a factor of 2: $(x+1)(x-\frac{1}{2})(x+1)$	The state of the s	A0.		
	Answer only, with one sign error: eg. $(x + 1)$				
	M1A1M1A0. (c) Award M1A1M1A1 for Lis	ting all three correct factors with no working.			