

The points A(1, 7), B(20, 7) and C(p, q) form the vertices of a triangle ABC, as shown in Figure 2. The point D(8, 2) is the mid-point of AC.

(a) Find the value of p and the value of q.

(2)

The line l, which passes through D and is perpendicular to AC, intersects AB at E.

- (b) Find an equation for l, in the form ax + by + c = 0, where a, b and c are integers.
- (*c*) Find the exact *x*-coordinate of *E*.

$\langle \mathbf{a} \rangle$	
(2)	

(5)

Jan 05 Q8

(3)

(4)

(5)

(3)

(4)

(3)

June 05 Q8

Jan 05 Q10

2. Given that

$$f(x) = x^2 - 6x + 18, \quad x \ge 0,$$

(a) express f(x) in the form $(x - a)^2 + b$, where a and b are integers.

The curve *C* with equation y = f(x), $x \ge 0$, meets the *y*-axis at *P* and has a minimum point at *Q*.

(b) Sketch the graph of C, showing the coordinates of P and Q.

The line y = 41 meets *C* at the point *R*.

- (c) Find the x-coordinate of R, giving your answer in the form $p + q\sqrt{2}$, where p and q are integers.
- **3.** The line l_1 passes through the point (9, -4) and has gradient $\frac{1}{3}$.
 - (a) Find an equation for l_1 in the form ax + by + c = 0, where a, b and c are integers.

The line l_2 passes through the origin O and has gradient -2. The lines l_1 and l_2 intersect at the point P.

(*b*) Calculate the coordinates of *P*.

Given that l_1 crosses the *y*-axis at the point *C*,

- (c) calculate the exact area of $\triangle OCP$.
- 4. The line *L* has equation y = 5 2x.

<i>(a)</i>	Show that the point $P(3, -1)$ lies on L .	
		(1)
(<i>b</i>)	Find an equation of the line perpendicular to L , which passes through P . Give	your answer
	in the form $ax + by + c = 0$, where a, b and c are integers.	(4)
		Jan 06 Q3

	(<i>d</i>) Hence, or otherwise, find the exact area of triangle <i>PQR</i> . Ju	(4) ne 06 Q11
		(2)
	(c) Show that the length of RS is $3\sqrt{5}$.	
	(<i>b</i>) Calculate the coordinates of <i>S</i> .	(5)
	The line l_2 passes through the point $R(10, 0)$ and is perpendicular to l_1 . The line intersect at the point <i>S</i> .	es l_1 and l_2
	(a) Find an equation for l_1 in the form $y = mx + c$, where m and c are constants.	(4)
5.	The line l_1 passes through the points $P(-1, 2)$ and $Q(11, 8)$.	

6. The curve C has equation $y = x^2(x-6) + \frac{4}{x}$, x > 0.

The points *P* and *Q* lie on *C* and have *x*-coordinates 1 and 2 respectively.

(a) Show that the length of PQ is $\sqrt{170}$.

(4)

June (07 Q1	0
--------	-------	---

	(c) Find the area of triangle <i>ABP</i> .	(4) June 07 Q11	
	The lines l_1 and l_2 cross the line $y = 1$ at the points A and B respectively.		
	(<i>b</i>) Find the coordinates of <i>P</i> .	(3)	
	The point of intersection of l_1 and l_2 is <i>P</i> .		
	(a) Find the gradient of the line l_2 .	(2)	
7.	The line l_1 has equation $y = 3x + 2$ and the line l_2 has equation $3x + 2y - 8 =$	0.	

- 8. The point A(-6, 4) and the point B(8, -3) lie on the line L.
 - (a) Find an equation for L in the form ax + by + c = 0, where a, b and c are integers.
 - (b) Find the distance AB, giving your answer in the form $k\sqrt{5}$, where k is an integer. (3)

Jan 08 Q4

(4)

9.

Figure 2

The points Q(1, 3) and R(7, 0) lie on the line l_1 , as shown in Figure 2.

The length of *QR* is $a\sqrt{5}$.

(a) Find the value of a. (3) The line l_2 is perpendicular to l_1 , passes through Q and crosses the y-axis at the point P, as shown in Figure 2. Find

		June 08 Q10
(<i>d</i>)	the area of ΔPQR .	(4)
		(1)
(<i>c</i>)	the coordinates of <i>P</i> ,	
(b)	an equation for l_2 ,	(5)

10.	The line l_1 passes through the point $A(2, 5)$ and has gradient $-\frac{1}{2}$.	
	(a) Find an equation of l_1 , giving your answer in the form $y = mx + c$.	(3)
	The point <i>B</i> has coordinates $(-2, 7)$.	
	(b) Show that B lies on l_1 .	(1)
	(c) Find the length of AB, giving your answer in the form $k\sqrt{5}$, where k is an integer.	(3)
	The point <i>C</i> lies on l_1 and has <i>x</i> -coordinate equal to <i>p</i> .	
	The length of AC is 5 units.	
	(d) Show that p satisfies $p^2 - 4p - 16 = 0.$ Jan 09	(4) Q10

11.

Figure 1

The points A and B have coordinates (6, 7) and (8, 2) respectively.

The line l passes through the point A and is perpendicular to the line AB, as shown in Figure 1.

(a) Find an equation for l in the form ax + by + c = 0, where a, b and c are integers.

(4)

(2)

Given that l intersects the y-axis at the point C, find

- (*b*) the coordinates of *C*,
- (c) the area of $\triangle OCB$, where O is the origin.

(2) June 09 Q8

12. The line l_1 has equation 3x + 5y - 2 = 0.

<i>(a)</i>	Find the	gradient of l_1 .
------------	----------	---------------------

The line l_2 is perpendicular to l_1 and passes through the point (3, 1).

- (b) Find the equation of l_2 in the form y = mx + c, where m and c are constants. (3) Jan 10 Q3
- **13.** (*a*) Factorise completely $x^3 4x$.
 - (b) Sketch the curve C with equation

$$y = x^3 - 4x,$$

showing the coordinates of the points at which the curve meets the axis.

(3)

(3)

(2)

The point A with x-coordinate -1 and the point B with x-coordinate 3 lie on the curve C.

	(<i>c</i>)	(c) Find an equation of the line which passes through A and B, giving your answer in the for $y = mx + c$, where m and c are constants.	
			(5)
	(<i>d</i>)	Show that the length of <i>AB</i> is $k\sqrt{10}$, where <i>k</i> is a constant to be found.	(2)
			Jan 10 Q9
14.	(<i>a</i>)	Find an equation of the line joining $A(7, 4)$ and $B(2, 0)$, giving your an $ax + by + c = 0$, where <i>a</i> , <i>b</i> and <i>c</i> are integers.	swer in the form
			(3)
	(<i>b</i>)	Find the length of <i>AB</i> , leaving your answer in surd form.	(2)
	The	e point <i>C</i> has coordinates (2, <i>t</i>), where $t > 0$, and $AC = AB$.	
	(<i>c</i>)	Find the value of <i>t</i> .	(1)
	(d)	Find the area of triangle ABC .	
			(2)
			June 10 Q8

www.naikermaths.com

15.	The line L_1 has equation $2y - 3x - k = 0$, where k is a constant.	
	Given that the point $A(1, 4)$ lies on L_1 , find	
	(a) the value of k , (1))
	(b) the gradient of L_1 . (2))
	The line L_2 passes through A and is perpendicular to L_1 .	
	(c) Find an equation of L_2 giving your answer in the form $ax + by + c = 0$, where a, b and a are integers.	2
	(4))
	The line L_2 crosses the x-axis at the point B.	
	(<i>d</i>) Find the coordinates of <i>B</i> . (2))
	(e) Find the exact length of AB.	,
	(2) Jan 11 Q9))

16. The points P and Q have coordinates (-1, 6) and (9, 0) respectively.

The line l is perpendicular to PQ and passes through the mid-point of PQ.

Find an equation for *l*, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

(5)

June 11 Q3