Straight line graphs - Edexcel Past Exam Questions

1.

The points $A(1,7), B(20,7)$ and $C(p, q)$ form the vertices of a triangle $A B C$, as shown in Figure 2. The point $D(8,2)$ is the mid-point of $A C$.
(a) Find the value of p and the value of q.

The line l, which passes through D and is perpendicular to $A C$, intersects $A B$ at E.
(b) Find an equation for l, in the form $a x+b y+c=0$, where a, b and c are integers.
(c) Find the exact x-coordinate of E.

Jan 05 Q8
2. Given that

$$
\mathrm{f}(x)=x^{2}-6 x+18, \quad x \geq 0
$$

(a) express $\mathrm{f}(x)$ in the form $(x-a)^{2}+b$, where a and b are integers.

The curve C with equation $y=\mathrm{f}(x), x \geq 0$, meets the y-axis at P and has a minimum point at Q.
(b) Sketch the graph of C, showing the coordinates of P and Q.

The line $y=41$ meets C at the point R.
(c) Find the x-coordinate of R, giving your answer in the form $p+q \sqrt{ } 2$, where p and q are integers.

Jan 05 Q10
3. The line l_{1} passes through the point $(9,-4)$ and has gradient $\frac{1}{3}$.
(a) Find an equation for l_{1} in the form $a x+b y+c=0$, where a, b and c are integers.

The line l_{2} passes through the origin O and has gradient -2 . The lines l_{1} and l_{2} intersect at the point P.
(b) Calculate the coordinates of P.

Given that l_{1} crosses the y-axis at the point C,
(c) calculate the exact area of $\triangle O C P$.

June 05 Q8
4. The line L has equation $y=5-2 x$.
(a) Show that the point $P(3,-1)$ lies on L.
(b) Find an equation of the line perpendicular to L, which passes through P. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.
5. The line l_{1} passes through the points $P(-1,2)$ and $Q(11,8)$.
(a) Find an equation for l_{1} in the form $y=m x+c$, where m and c are constants.

The line l_{2} passes through the point $R(10,0)$ and is perpendicular to l_{1}. The lines l_{1} and l_{2} intersect at the point S.
(b) Calculate the coordinates of S.
(c) Show that the length of $R S$ is $3 \sqrt{5}$.
(d) Hence, or otherwise, find the exact area of triangle $P Q R$.
6. The curve C has equation $y=x^{2}(x-6)+\frac{4}{x}, x>0$.

The points P and Q lie on C and have x-coordinates 1 and 2 respectively.
(a) Show that the length of $P Q$ is $\sqrt{ } 170$.

June 07 Q10
7. The line l_{1} has equation $y=3 x+2$ and the line l_{2} has equation $3 x+2 y-8=0$.
(a) Find the gradient of the line l_{2}.

The point of intersection of l_{1} and l_{2} is P.
(b) Find the coordinates of P.

The lines l_{1} and l_{2} cross the line $y=1$ at the points A and B respectively.
(c) Find the area of triangle $A B P$.
8. The point $A(-6,4)$ and the point $B(8,-3)$ lie on the line L.
(a) Find an equation for L in the form $a x+b y+c=0$, where a, b and c are integers.
(b) Find the distance $A B$, giving your answer in the form $k \sqrt{ } 5$, where k is an integer.

Jan 08 Q4
9.

Figure 2
The points $Q(1,3)$ and $R(7,0)$ lie on the line l_{1}, as shown in Figure 2.
The length of $Q R$ is $a \sqrt{ } 5$.
(a) Find the value of a.

The line l_{2} is perpendicular to l_{1}, passes through Q and crosses the y-axis at the point P, as shown in Figure 2. Find
(b) an equation for l_{2},
(c) the coordinates of P,
(d) the area of $\triangle P Q R$.
10. The line l_{1} passes through the point $A(2,5)$ and has gradient $-\frac{1}{2}$.
(a) Find an equation of l_{1}, giving your answer in the form $y=m x+c$.

The point B has coordinates $(-2,7)$.
(b) Show that B lies on l_{1}.
(c) Find the length of $A B$, giving your answer in the form $k \sqrt{ } 5$, where k is an integer.

The point C lies on l_{1} and has x-coordinate equal to p.
The length of $A C$ is 5 units.
(d) Show that p satisfies

$$
\begin{equation*}
p^{2}-4 p-16=0 . \tag{4}
\end{equation*}
$$

11.

Figure 1

The points A and B have coordinates $(6,7)$ and $(8,2)$ respectively.
The line l passes through the point A and is perpendicular to the line $A B$, as shown in Figure 1.
(a) Find an equation for l in the form $a x+b y+c=0$, where a, b and c are integers.

Given that l intersects the y-axis at the point C, find
(b) the coordinates of C,
(c) the area of $\triangle O C B$, where O is the origin.
12. The line l_{1} has equation $3 x+5 y-2=0$.
(a) Find the gradient of l_{1}.

The line l_{2} is perpendicular to l_{1} and passes through the point $(3,1)$.
(b) Find the equation of l_{2} in the form $y=m x+c$, where m and c are constants.

Jan 10 Q3
13. (a) Factorise completely $x^{3}-4 x$.
(b) Sketch the curve C with equation

$$
y=x^{3}-4 x,
$$

showing the coordinates of the points at which the curve meets the axis.

The point A with x-coordinate -1 and the point B with x-coordinate 3 lie on the curve C.
(c) Find an equation of the line which passes through A and B, giving your answer in the form $y=m x+c$, where m and c are constants.
(d) Show that the length of $A B$ is $k \sqrt{ } 10$, where k is a constant to be found.

Jan 10 Q9
14. (a) Find an equation of the line joining $A(7,4)$ and $B(2,0)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(b) Find the length of $A B$, leaving your answer in surd form.

The point C has coordinates $(2, t)$, where $t>0$, and $A C=A B$.
(c) Find the value of t.
(d) Find the area of triangle $A B C$.
15. The line L_{1} has equation $2 y-3 x-k=0$, where k is a constant.

Given that the point $A(1,4)$ lies on L_{1}, find
(a) the value of k,
(b) the gradient of L_{1}.

The line L_{2} passes through A and is perpendicular to L_{1}.
(c) Find an equation of L_{2} giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The line L_{2} crosses the x-axis at the point B.
(d) Find the coordinates of B.
(e) Find the exact length of $A B$.

Jan 11 Q9
16. The points P and Q have coordinates $(-1,6)$ and $(9,0)$ respectively.

The line l is perpendicular to $P Q$ and passes through the mid-point of $P Q$.
Find an equation for l, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

June 11 Q3

