Circles - Edexcel Past Exam Questions MARK SCHEME

Question 1 June 05 Q8

Question number	Scheme	Marks	
	(a) Centre $(5, 0)$ (or $x = 5, y = 0$)	B1 B1	(2)
	(b) $(x \pm a)^2 \pm b \pm 9 + (y \pm c)^2 = 0 \implies r^2 = \dots \text{ or } r = \dots$, Radius = 4	M1, A1	(2)
	(c) $(1, 0)$, $(9, 0)$ Allow just $x = 1$, $x = 9$	B1ft, B1ft	(2)
	(d) Gradient of $AT = -\frac{2}{7}$ $y = -\frac{2}{7}(x-5)$	B1	
	$y = -\frac{2}{7}(x-5)$	M1 A1ft	(3)
			9
	(a) (0, 5) scores B1 B0.		
	 (d) M1: Equation of straight line through centre, <u>any</u> gradient (except 0 or ∞) (The equation can be in any form). A1ft: Follow through from centre, but gradient must be -2/7. 		

•

Question 2 Jan 05 Q2

Question Number	Scheme	Marks
	(a) $(\frac{5+13}{2}, \frac{-1+11}{2}), = \underline{(9,5)}$	M1, A1 (2)
	(b) $r^2 = (9-5)^2 + (5-1)^2 (= 52)$	M1 M1, A∜A1
	Equation of circle: $(x-9)^2 + (y-5)^2 = 52$	(4)
	(a) M1 for a graph of	(6)
	(a) M1 for some use of correct formula. can be implied	
	Use of $(\frac{1}{2}(x_A - x_B), \frac{1}{2}(y_A - y_B)) \to (4.6)$ is M0A0	
	(b) M1 attempt to find r or r^2 . $\sqrt{\text{their }(9,5)}$	
	$r = AB = \sqrt{208} \text{ is M0}$	
	2^{nd} M1 for $(x-9)^2 + (y-5)^2 = \text{constant.}$ ($\sqrt{\text{their }}(9,5)$	
	A1 $\sqrt{\text{ for } (x-9)^2 + (y-5)^2}$ = their r^2 . ($\sqrt{\text{their } (9,5)}$ and r^2) A1 for $(x-9)^2 + (y-5)^2 = 52$ only.	

Question 3 Jan 06 Q3

(a) $(AB)^2 = (4-3)^2 + (5)^2$ [= 26] $AB = \sqrt{26}$	M1 A1 (2	
(b) $p = \left(\frac{4+3}{2}, \frac{5}{2}\right)$	M1	,
$= \underbrace{\left(\frac{7}{2}, \frac{5}{2}\right)}$	A1 (2)
(c) $\left(x - x_p\right)^2 + \left(y - y_p\right)^2 = \left(\frac{AB}{2}\right)^2$ LHS	M1 M1	
$(x-3.5)^2 + (y-2.5)^2 = 6.5$ oe		3) 7
(a) M1 for an expression for AB or AB^2 N.B. $(x_1 + x_2)^2 +$ is M0 (b) M1 for a full method for x_p		_
(c) 1^{st} M1 for using their x_p and y_p in LHS		
2^{nd} M1 for using their AB in RHS N.B. $x^2 + y^2 - 7x - 5y + 12 = 0$ scores, of course, 3/3 for part (c).		
Condone use of calculator approximations that lead to correct answer given.		

Question 4 June 06 Q7

Question number	Scheme		Marks	3
	(a) Gradient of PQ is $-\frac{1}{3}$		B1	
	$y-2=-\frac{1}{3}(x-2)$ $(3y+x=8)$		M1 A1	(3)
	(b) $y = 1$: $3 + x = 8$ $x = 5$	(*)	В1	(1)
	(c) $("5"-2)^2 + (1-2)^2$ M: Attempt PQ^2 or	PQ	Ml Al	
	$(x-5)^2 + (y-1)^2 = 10$ M: $(x \pm a)^2 + (y \pm b)^2$	$k^2 = k$	M1 A1	(4)
				8
	(a) M1: eqn. of a straight line through (2, 2) with any gradient exc	cept 3, 0 or ∞ .		
	Alternative: Using $(2, 2)$ in $y = mx + c$ to find a value of c see an equation (general or specific) must be seen.	ores M1, but		
	If the given value $x = 5$ is used to find the gradient of PQ , may are (a) B0 M1 A1 (b) B0.	ximum marks		
	(c) For the first M1, condone <u>one</u> slip, numerical or sign, <u>inside</u> a The first M1 can be scored if <u>their</u> x-coord. is used instead of For the second M1, allow any equation in this form, with non-	5.		

Question 5 Jan 07 Q3

Question Number	Scheme	Marks
	Centre $\left(\frac{-1+3}{2}, \frac{6+4}{2}\right)$, i.e. $(1, 5)$	M1, A1
	$r = \frac{\sqrt{(3 - (-1))^2 + (6 - 4)^2}}{2}$ or $r^2 = (1 - (-1))^2 + (5 - 4)^2$ or $r^2 = (3 - 1)^2 + (6 - 5)^2$ o.e.	M1
	$(x-1)^2 + (y-5)^2 = 5$	M1,A1,A1 (6)

Some use of correct formula in x or y coordinate. Can be implied.	M1
Use of $\left(\frac{1}{2}(x_A - x_B), \frac{1}{2}(y_A - y_B)\right) \rightarrow (-2, -1)$ or $(2, 1)$ is M0 A0 but watch out for use of	
$x_A + \frac{1}{2}(x_A - x_B)$ etc which is okay.	
(1, 5)	A1
(5, 1) gains M1 A0.	
Correct method to find r or r^2 using given points or f.t. from their centre. Does not need to be	M1
simplified.	
Attempting radius = $\sqrt{\frac{(\text{diameter})^2}{2}}$ is an incorrect method, so M0.	
N.B. Be careful of labelling: candidates may not use d for diameter and r for radius.	
Labelling should be ignored.	
Simplification may be incorrect - mark awarded for correct method.	
Use of $\sqrt{(x_1 - x_2)^2 - (y_1 - y_2)^2}$ is M0.	
Write down $(x \pm a)^2 + (y \pm b)^2 =$ any constant (a letter or a number).	M1
Numbers do not have to be substituted for a, b and if they are they can be wrong.	
LHS is $(x-1)^2 + (y-5)^2$. Ignore RHS.	A1
RHS is 5.	A1
Ignore subsequent working. Condone use of decimals that leads to exact 5.	
Or correct equivalents, e.g. $x^2 + y^2 - 2x - 10y + 21 = 0$.	

Alternative - note the order of the marks needed for ePEN.	
As above.	M1
As above.	A1
$x^2 + y^2 + (constant)x + (constant)y + constant = 0$. Numbers do not have to be substituted for	3rd M1
the constants and if they are they can be wrong.	
Attempt an appropriate substitution of the coordinates of their centre (i.e. working with	2nd M1
coefficient of x and coefficient of y in equation of circle) and substitute $(-1, 4)$ or $(3, 6)$ into	
equation of circle.	
$-2x - 10y$ part of the equation $x^2 + y^2 - 2x - 10y + 21 = 0$.	A1
$+21 = 0$ part of the equation $x^2 + y^2 - 2x - 10y + 21 = 0$.	A1
Or correct equivalents, e.g. $(x-1)^2 + (y-5)^2 = 5$.	

Question 6 June 07 Q7

Question number	Scheme	Marl	cs
	(a) Gradient of AM: $\frac{1-(-2)}{3-1} = \frac{3}{2}$ or $\frac{-3}{-2}$	В1	
	Gradient of l : $=-\frac{2}{3}$ M: use of $m_1m_2=-1$, or equiv.	M1	
	$y-1=-\frac{2}{3}(x-3)$ or $\frac{y-1}{x-3}=-\frac{2}{3}$ [3y = -2x+9] (Any equiv. form)	M1 A1	(4)
	(b) $x = 6$: $3y = -12 + 9 = -3$ $y = -1$ (or show that for $y = -1$, $x = 6$) (*) (A conclusion is <u>not</u> required).	B1	(1)
	(c) $(r^2 =) (6-1)^2 + (-1-(-2))^2$ M: Attempt r^2 or r	M1 A1	
	N.B. Simplification is <u>not</u> required to score M1 A1		
	$(x\pm 6)^2 + (y\pm 1)^2 = k$, $k \neq 0$ (Value for k not needed, could be r^2 or r)	M1	
	$(x-6)^2 + (y+1)^2 = 26$ (or equiv.)	A1	(4)
	Allow $(\sqrt{26})^2$ or other exact equivalents for 26. (But $(x-6)^2 + (y-1)^2 = 26$ scores M1 A0)		
	(Correct answer with no working scores full marks)		9
3/	(a) 2^{nd} M1: eqn. of a straight line through (3, 1) with any gradient except 0 or ∞ .		
	Alternative: Using $(3, 1)$ in $y = mx + c$ to find a value of c scores M1, but an equation (general or specific) must be seen.		
	Having coords the <u>wrong way round</u> , e.g. $y-3=-\frac{2}{3}(x-1)$, loses the		
	2^{nd} M mark <u>unless</u> a correct general formula is seen, e.g. $y - y_1 = m(x - x_1)$.		
	If the point $P(6,-1)$ is used to find the gradient of MP , maximum marks are (a) B0 M0 M1 A1 (b) B0.		
	(c) 1st M1: Condone one slip, numerical or sign, inside a bracket.		
	Must be attempting to use points $P(6, -1)$ and $A(1, -2)$, or perhaps P and B . (Correct coordinates for B are $(5, 4)$).		
	1 st M alternative is to use a complete Pythag. method on triangle MAP, n.b. $MP = MA = \sqrt{13}$.		
	Special case: If candidate persists in using their value for the y-coordinate of P instead of the given -1 , allow the M marks in part (c) if earned.		

Question 7 June 08 Q5

Question Number	Scheme	Marks
(a)	$(8-3)^2 + (3-1)^2$ or $\sqrt{(8-3)^2 + (3-1)^2}$	M1 A1
	$(x \pm 3)^2 + (y \pm 1)^2 = k$ or $(x \pm 1)^2 + (y \pm 3)^2 = k$ (k a positive <u>value</u>)	M1
	$(8-3)^2 + (3-1)^2$ or $\sqrt{(8-3)^2 + (3-1)^2}$ $(x\pm 3)^2 + (y\pm 1)^2 = k$ or $(x\pm 1)^2 + (y\pm 3)^2 = k$ (k a positive value) $(x-3)^2 + (y-1)^2 = 29$	A1 (4)
(b)	Gradient of radius = $\frac{2}{5}$ (or exact equivalent)	В1
	Gradient of tangent = $\frac{-5}{2}$	M1
	$y - 3 = \frac{-5}{2}(x - 8)$	M1 A1 ft
	5x+2y-46=0 or equivalent	A1 (5)
		(9 marks)

Question 8 Jan 09 Q5

Question Number	Scheme	Marks
(a)	$PQ: m_1 = \frac{10-2}{9-(-3)} (=\frac{3}{3})$ and $QR: m_2 = \frac{10-4}{9-a}$	M1
	$m_1 m_2 = -1: \frac{8}{12} \times \frac{6}{9-a} = -1$ $a = 13$ (*)	M1 A1
Alt for (a)	(a) Alternative method (Pythagoras) Finds all three of the following $(9-(-3))^2 + (10-2)^2$, (i.e.208), $(9-a)^2 + (10-4)^2$, $(a-(-3))^2 + (4-2)^2$	M1
	Using Pythagoras (correct way around) e.g. $a^2 + 6a + 9 = 240 + a^2 - 18a + 81$ to form equation Solve (or verify) for a , $a = 13$ (*)	M1 A1 (3
	(b) Centre is at $(5, 3)$ $\binom{r^2}{r^2} = (10 - 3)^2 + (9 - 5)^2$ or equiv., or $\binom{d^2}{r^2} = (13 - (-3))^2 + (4 - 2)^2$ $(x - 5)^2 + (y - 3)^2 = 65$ or $x^2 + y^2 - 10x - 6y - 31 = 0$	M1 A1 M1 A1 (5
Alt for (b)	Uses $(x-a)^2 + (y-b)^2 = r^2$ or $x^2 + y^2 + 2gx + 2fy + c = 0$ and substitutes (-3, 2), (9, 10) and (13, 4) then eliminates one unknown Eliminates second unknown	M1 M1
	Obtains $g = -5$, $f = -3$, $c = -31$ or $a = 5$, $b = 3$, $r^2 = 65$	A1, A1, B1cao (5
Notes (a)	M1-considers gradients of PQ and QR -must be y difference $/x$ difference (or considers three lengths as in alternative method) M1 Substitutes gradients into product = -1 (or lengths into Pythagoras' Theorem correct way round) A1 Obtains $a=13$ with no errors by solution or verification. Verification can see Geometrical method: B1 for coordinates of centre – can be implied by use in part M1 for attempt to find r^2 , d^2 , r or d (allow one slip in a bracket). A1 cao. These two marks may be gained implicitly from circle equation M1 for $(x\pm5)^2+(y\pm3)^2=k^2$ or $(x\pm3)^2+(y\pm5)^2=k^2$ ft their (5,3) Allow k^2 in numerical. A1 cao for whole equation and rhs must be 65 or $(\sqrt{65})^2$, (similarly B1 must be	ore 3/3. rt (b)
	$(\sqrt{65})^2$, in alternative method for (b))	0.5 01

Question Number	Scheme	Marks
Further alternatives	(i) A number of methods find gradient of PQ = 2/3 then give perpendicular gradient is -3/2 This is M1	M1
	They then proceed using equations of lines through point Q or by using gradient QR to obtain equation such as $\frac{4-10}{a-9} = -\frac{3}{2}$ M1 (may still have x in this equation rather than a and there may be a small slip)	M1
	They then complete to give $(a) = 13$ A1	A1
	(ii) A long involved method has been seen finding the coordinates of the centre of the circle first. This can be done by a variety of methods Giving centre as $(c, 3)$ and using an equation such as $(c-9)^2 + 7^2 = (c+3)^2 + 1^2$ (equal radii) or $\frac{3-6}{c-3} = -\frac{3}{2}$ M1 (perpendicular from centre to chord bisects chord)	M1
	Then using c (= 5) to find a is M1	M1
	Finally $a = 13$ A1	A1
	(iii) Vector Method:	M1
	States PQ. QR = 0, with vectors stated $12i + 8j$ and $(9 - a)i + 6j$ is M1 Evaluates scalar product so $108 - 12 a + 48 = 0$ (M1)	M1
	solves to give $a = 13$ (A1)	A1

Question 9 June 09 Q6

Question Number	Scheme	Ма	rks
Q (a)	$(x-3)^2 - 9 + (y+2)^2 - 4 = 12$ Centre is $(3, -2)$	M1 A1	, A1
	$(x-3)^2 + (y+2)^2 = 12 + "9" + "4"$ $r = \sqrt{12 + "9" + "4"} = 5 \text{ (or } \sqrt{25} \text{)}$	M1 A1	(5)
(b)	$PQ = \sqrt{(7-1)^2 + (-5-1)^2}$ or $\sqrt{8^2 + 6^2}$	M1	
	= 10 = 2×radius, : diam. (N.B. For A1, need a comment or conclusion)	A1	(2
	[ALT: midpt. of PQ $\left(\frac{7+(-1)}{2}, \frac{1+(-5)}{2}\right)$: M1, = $(3, -2)$ = centre: A1]		
	[ALT: eqn. of PQ $3x + 4y - 1 = 0$: M1, verify $(3, -2)$ lies on this: A1]		
	[ALT: find two grads, e.g. PQ and P to centre: M1, equal : diameter: A1] [ALT: show that point $S(-1, -5)$ or $(7, 1)$ lies on circle: M1		
(c)	because $\angle PSQ = 90^{\circ}$, semicircle : diameter: A1] R must lie on the circle (angle in a semicircle theorem) often <u>implied</u> by <u>a diagram</u> with R on the circle or by subsequent working)	B1	
	$x = 0 \Rightarrow y^2 + 4y - 12 = 0$	M1	
	(y-2)(y+6)=0 $y=$ (M is dependent on previous M)	dM1	
	y = -6 or 2 (Ignore $y = -6$ if seen, and 'coordinates' are not required))	A1	[11
(a	1 st A1 x-coordinate 3, 2 nd A1 y-coordinate -2 2 nd M1 for a full method leading to $r =$, with their 9 and their 4, 3 rd A1 5 or $\sqrt{2}$ The 1 st M can be implied by $(\pm 3, \pm 2)$ but a full method must be seen for the 2 nd M. Where the 'diameter' in part (b) has clearly been used to answer part (a), no marks in (a but in this case the M1 (not the A1) for part (b) can be given for work seen in (a). Alternative 1 st M1 for comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write down centre $(-g, -f)$ directly. Condone sign errors for this M mark. 2 nd M1 for using $r = \sqrt{g^2 + f^2 - c}$. Condone sign errors for this M mark.),	
(c)	 1st M1 for setting x = 0 and getting a 3TQ in y by using eqn. of circle. 2nd M1 (dep.) for attempt to solve a 3TQ leading to at least one solution for y. Alternative 1: (Requires the B mark as in the main scheme) 1st M for using (3, 4, 5) triangle with vertices (3, -2), (0, -2), (0, y) to get a linear or quadratic equation in y (e.g. 3² + (y + 2)² = 25). 		
	2 nd M (dep.) as in main scheme, but may be scored by simply solving a linear equatio Alternative 2: (Not requiring realisation that R is on the circle)		
	B1 for attempt at $m_{pp} \times m_{Qp} = -1$, (NOT m_{pQ}) or for attempt at Pythag. in triangle		
	1 st M1 for setting $x = 0$, i.e. $(0, y)$, and proceeding to get a 3TQ in y. Then main schem Alternative 2 by 'verification':		
	B1 for attempt at $m_{PR} \times m_{QR} = -1$, (NOT m_{PQ}) or for attempt at Pythag. in triangle	PQR.	
	1 st M1 for trying (0, 2). 2 nd M1 (dep.) for performing all required calculations. A1 for fully correct working and conclusion.		

Question 10 Jan 10 Q8

Question Number	Scheme	Marks
(a)	N(2, -1)	B1, B1
(b)		(2
(6)	$r = \sqrt{\frac{169}{4}} = \frac{13}{2} = 6.5$	B1 (1
(c)	Complete Method to find x coordinates, $x_2 - x_1 = 12$ and $\frac{x_1 + x_2}{2} = 2$ then solve	M1
	To obtain $x_1 = -4$, $x_2 = 8$	A1ft A1ft
	Complete Method to find y coordinates, using equation of circle or Pythagoras	13634-1
	i.e. let d be the distance below N of A then $d^2 = 6.5^2 - 6^2 \implies d = 2.5 \implies y =$	M1
	So $y_2 = y_1 = -3.5$	A1 (5
(d)	Let $A\hat{N}B = 2\theta \implies \sin \theta = \frac{6}{6.5} \implies \theta = (67.38)$	M1
	0.5	A1 (2
2010	So angle ANB is 134.8 *	,
(e)	AP is perpendicular to AN so using triangle ANP $\tan \theta = \frac{AP}{"6.5"}$	M1
	Therefore $AP = 15.6$	A1cao (2
		[12
	B1 for 2 (α), B1 for -1	
(b)	B1 for 6.5 o.e.	
(c)	1 st M1 for finding x coordinates – may be awarded if either x co-ord is correct A1ft, A1ft are for α – 6 and α + 6 if x coordinate of N is α	
	2^{nd} M1 for a method to find y coordinates – may be given if y co-ordinate is correct A marks is for -3.5 only.	
(d)	5 15	
	finding another angle and using angles of triangle.) ft their 6.5 from radius or	
	"6 5" ² +"6 5" ² -12 ²	
	$(\cos ANB = \frac{\text{"6.5"}^2 + \text{"6.5"}^2 - 12^2}{2 \times \text{"6.5"} \times \text{"6.5"}} = -0.704)$	
	A1 is a printed answer and must be 134.8 - do not accept 134.76.	
(e)		
-	N.P. May use triangle AVP where V is the mid point of AP. Or may use triangle	
	N.B. May use triangle AXP where X is the mid point of AB . Or may use triangle ABP. From circle theorems may use angle $BAP = 67.38$ or some variation.	
	Eg $\frac{AP}{\sin 67.4} = \frac{12}{\sin 45.2}$, $AP = \frac{6}{\sin 22.6}$ or $AP = \frac{6}{\cos 67.4}$ are each worth M1	

Question 11 June 10 Q10

Question Number	Scheme	Marks
-	(a) $(10-2)^2 + (7-1)^2$ or $\sqrt{(10-2)^2 + (7-1)^2}$	M1 A1
	$(x \pm 2)^2 + (y \pm 1)^2 = k \qquad (k \text{ a positive value})$	м1
	$(x-2)^2 + (y-1)^2 = 100$ (Accept 10^2 for 100)	A1
	(Answer only scores full marks)	(4
	(b) (Gradient of radius =) $\frac{7-1}{10-2} = \frac{6}{8}$ (or equiv.) Must be seen in part (b)	B1
	Gradient of tangent = $\frac{-4}{3}$ (Using perpendicular gradient method)	M1
	$y-7=m(x-10)$ Eqn., in any form, of a line through (10, 7) with any numerical gradient (except 0 or ∞)	м1
	$y-7 = \frac{-4}{3}(x-10)$ or equiv (ft gradient of <u>radius</u> , dep. on <u>both</u> M marks)	A1ft
	${3y = -4x + 61}$ (N.B. The A1 is only available as <u>ft</u> after B0) The unsimplified version scores the A mark (isw if necessary subsequent mistakes in simplification are not penalised here. The equation must at some stage be <u>exact</u> , not, e.g. $y = -1.3x + 20.3$	
		(4
	(c) $\sqrt{r^2 - \left(\frac{r}{2}\right)^2}$ Condone sign slip if there is evidence of correct use of Pythag.	м1
	$=\sqrt{10^2-5^2}$ or numerically exact equivalent	A1
	$PQ = 2\sqrt{75} = 10\sqrt{3}$ Simplest surd form $10\sqrt{3}$ required for final mark	A1
		(3
	(b) 2 nd M: Using (10, 7) to find the equation, in any form, of a straight line through (10, 7), with any numerical gradient (except 0 or ∞).	
	Alternative: 2^{nd} M: Using (10, 7) and an m value in $y = mx + c$ to find a value of c .	
	(b) Alternative for first 2 marks (differentiation):	
	$2(x-2) + 2(y-1)\frac{dy}{dx} = 0$ or equiv. B1	
	Substitute $x = 10$ and $y = 7$ to find a value for $\frac{dy}{dx}$ M1	
	(This M mark can be awarded generously, even if the attempted 'differentiation' is not 'implicit').	
	(c) Alternatives:	
	To score M1, must be a <u>fully</u> correct method to obtain $\frac{1}{2}PQ$ or PQ .	
	1st A1: For alternative methods that find PQ directly, this mark is for an exact numerically correct version of PQ.	

Question 12 Jan 11 Q9

Question Number	Scheme	Marks	
(a)	$C\left(\frac{-2+8}{2}, \frac{11+1}{2}\right) = C(3, 6)$ AG Correct method (no errors) for finding the mid-point of <i>AB</i> giving $(3, 6)$	B1*	
(b)	$(8-3)^2 + (1-6)^2$ or $\sqrt{(8-3)^2 + (1-6)^2}$ or $\sqrt{(2-3)^2 + (11-6)^2}$ Applies distance formula in order to find the radius. Correct application of formula.	(1 M1	
		A1	
	$(x \pm 3)^2 + (y \pm 6)^2 = 50 \left(\text{or} \left(\sqrt{50} \right)^2 \text{ or } \left(5\sqrt{2} \right)^2 \right)$ $(x \pm 3)^2 + (y \pm 6)^2 = k$, $k \text{ is a positive } \underline{\text{value}}$.	М1	
	$(x-3)^2 + (y-6)^2 = 50$ (Not 7.07^2)	A1 (4	
(c)	{For $(10, 7)$, } $(10-3)^2 + (7-6)^2 = 50$, {so the point lies on C.}	<u>B1</u> (1	
(d)	{Gradient of radius} = $\frac{7-6}{10-3}$ or $\frac{1}{7}$ This must be seen in part (d).	В1	
	Gradient of tangent = $\frac{-7}{1}$ Using a perpendicular gradient method.	М1	
	y - 7 = -7(x - 10) $y - 7 = (their gradient)(x - 10)$	M1	
	y = -7x + 77 $y = -7x + 77$ or $y = 77 - 7x$	A1 cao (4	
	<u>Notes</u>		
(a)	Alternative method: $C\left(-2 + \frac{82}{2}, 11 + \frac{1-11}{2}\right)$ or $C\left(8 + \frac{-2-8}{2}, 1 + \frac{11-1}{2}\right)$		
(b)	You need to be convinced that the candidate is attempting to work out the radius and not the diameter of the circle to award the first M1. Therefore allow 1 st M1 generously for		
	$\frac{(-2-8)^2+(11-1)^2}{2}$		
	Award 1 st M1A1 for $\frac{(-2-8)^2+(11-1)^2}{4}$ or $\frac{\sqrt{(-2-8)^2+(11-1)^2}}{2}$.		
	Correct answer in (b) with no working scores full marks.		
(c)	BY awarded for correct verification of $(10-3) + (7-0) = 30$ with no circles.		
	Also to gain this mark candidates need to have the correct equation of the circle either from part (b) or re-attempted in part (c). They cannot verify (10, 7) lies on C without a correct C.		
	Also a candidate could either substitute $x = 10$ in C to find $y = 7$ or substitute $y = 7$ in find $x = 10$.	C to	

Question Number	Scheme Mark	
(d)	2^{nd} M1 mark also for the complete method of applying $7 = (\text{their gradient})(10) + c$, finding c . Note: Award 2^{nd} M0 in (d) if their numerical gradient is either 0 or ∞ .	
	Alternative: For first two marks (differentiation):	
	$2(x-3) + 2(y-6)\frac{dy}{dx} = 0$ (or equivalent) scores B1.	
	1 st M1 for substituting both $x = 10$ and $y = 7$ to find a value for $\frac{dy}{dx}$, which must contain be	
	x and y . (This M mark can be awarded generously, even if the attempted "differentiation" is not "implicit".)	
	Alternative: $(10-3)(x-3) + (7-6)(y-6) = 50$ scores B1M1M1 which leads to $y = -7x + 77$.	

Question 13 June 11 Q4

Question Number	Scheme	Marks	
	$x^2 + y^2 + 4x - 2y - 11 = 0$		
(a)	$\{(x+2)^2-4+(y-1)^2-1-11=0\}$ (±2, ±1), see not	es. M1	
(a)	Centre is (-2, 1). (-2,		
(b)			
(0)	$(x+2)^2 + (y-1)^2 = 11 + 1 + 4$ So $r = \sqrt{11 + 1 + 4} \implies r = 4$ $r = \sqrt{11 \pm "1" \pm "4"}$ 4 or $\sqrt{16}$ (Award A0 for ± 4)	A 1	
(-)	When $x = 0$, $y^2 - 2y - 11 = 0$ Putting $x = 0$ in C or their		
(c)	$y^2 - 2y - 11 = 0$ or $(y - 1)^2 = 12$,		
	$y = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-11)}}{2(1)} \left\{ = \frac{2 \pm \sqrt{48}}{2} \right\}$ Attempt to use formula or a method completing the square in order to find $y = 1$	nd M1	
		A1 cao cso	
	So, $y = 1 \pm 2\sqrt{3}$ $1 \pm 2\sqrt{3}$	[4]	
		[4]	
(a)	M1: for $(\pm 2, \pm 1)$. Otherwise, M1 for an attempt to complete the square eg. $(x \pm 2)^2 \pm \alpha$, $\alpha \neq 0$ or $(y \pm 1)^2 \pm \beta$, $\beta \neq 0$. M1A1: Correct answer of $(-2, 1)$ stated from any working gets M1A1.		
(b)			
(0)	M1: to find the radius using 11, "1" and "4", ie. $r = \sqrt{11 \pm "1" \pm "4"}$. By applying this n	ietnod candidates	
	will usually achieve $\sqrt{16}$, $\sqrt{6}$, $\sqrt{8}$ or $\sqrt{14}$ and not 16, 6, 8 or 14.		
	Note: $(x+2)^2 + (y-1)^2 = -11 - 5 = -16 \Rightarrow r = \sqrt{16} = 4$ should be awarded M0A0. Alternative: M1 in part (a): For comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write definition.		
	$(-g, -f)$ directly. Condone sign errors for this M mark. M1 in part (b): For using $r = \sqrt{1 - f}$ Condone sign errors for this method mark.	g^2+f^2-c .	
	$(x+2)^2 + (y-1)^2 = 16 \Rightarrow r = 8 \text{ scores M0A0, but } r = \sqrt{16} = 8 \text{ scores M1A1 isw.}$		
(c)	1 st M1: Putting $x = 0$ in either $x^2 + y^2 + 4x - 2y - 11 = 0$ or their circle equation usually	given in part (a)	
	part (b). 1st A1 for a correct equation in y in any form which can be implied by later working.		
	2^{nd} M1: See rules for using the formula. Or completing the square on a 3TQ to give $y = a \pm \sqrt{b}$, where		
	\sqrt{b} is a surd, $b \neq$ their 11 and $b > 0$. This mark should not be given for an attempt to factorise.		
	2^{nd} A1: Need exact pair in simplified surd form of $\{y = \}$ 1 ± $2\sqrt{3}$. This mark is also cso.		
	Do not need to see $(0, 1 + 2\sqrt{3})$ and $(0, 1 - 2\sqrt{3})$. Allow 2^{nd} A1 for bod $(1 + 2\sqrt{3}, 0)$ and $(1 - 2\sqrt{3}, 0)$.		
	Any incorrect working in (c) gets penalised the final accuracy mark. So, <u>beware</u> : incorrect $(x-2)^2 + (y-1)^2 = 16$ leading to $y^2 - 2y - 11 = 0$ and then $y = 1 \pm 2\sqrt{3}$ scores M1A1M1A0.		
	$(x-2) + (y-1) = 16$ leading to $y-2y-11=0$ and then $y=1\pm 2\sqrt{3}$ scores M1A11 Special Case for setting $y=0$: Award SC: M0A0M1A0 for an attempt at applying the for		
	Award SC: M0A0M1A0 for c	ompleting the	
	$x = \frac{-4 \pm \sqrt{(-4)^2 - 4(1)(-11)}}{2(1)} \left\{ = \frac{-4 \pm \sqrt{60}}{2} = -2 \pm \sqrt{15} \right\} $ square to their equation in x w be $x^2 + 4x - 11 = 0$ to give \sqrt{b} is a surd, $b \neq$ their 11 and	$\pm \sqrt{b}$, where	
	\sqrt{b} is a surd, $b \neq$ their 11 and	b>0.	
	Special Case: For a candidate not using \pm but achieving one of the correct answers then a		
	SC: M1A1 M1A0 for one of either $y = 1 + 2\sqrt{3}$ or $y = 1 - 2\sqrt{3}$ or $y = 1 + \sqrt{12}$ or $y = 1$	- √12.	