Kinematics

1. (a) ratio is $\frac{\frac{3}{4} d}{3}: \frac{\frac{1}{4} d}{2}$

M1 A1

$$
=\frac{1}{4}: \frac{1}{8}=2: 1
$$

M1 A1
(b) $80 \mathrm{kmh}^{-1}$ for $5 \mathrm{hrs}=400 \mathrm{~km}$

M1
$\frac{3}{4}$ of $400=300 \mathrm{~km}$
M1
av. speed on first part of journey $=\frac{300}{3}=100 \mathrm{kmh}^{-1}$
M1 A1
2. (a) use of $s=u t+\underset{\underline{2}}{\frac{1}{2}} a t^{2}$ for $O L(54 \mathrm{~m}, t=1)$ and $O M(144 \mathrm{~m}, t=4)$

M2
to give $54=u+\frac{1}{2} a \quad$ and $\quad 144=4 u+8 a$
A1
solve simult. to give $a=-12 \mathrm{~ms}^{-2}$
M1 A1
(b) for $O N, u=60, a=-12, v=0$

M1
$v^{2}=u^{2}+2 a s$, so $0=3600-24 s$
$s=150 \mathrm{~m}$, so $M N=150-144=6 \mathrm{~m}$.
M1

M1 A1
3. (a) $\operatorname{acc}^{\mathrm{n}}=\frac{36-0}{9}=4 \mathrm{~ms}^{-2}$

M1 A1
(b)

B4
(c) after t seconds $\quad s_{\mathrm{M}}=\frac{1}{2}(5)(30)+30(t-5) \quad($ for $t>5)$
after t seconds $\quad s_{\mathrm{C}}=\frac{1}{2}(9)(36)+36(t-9) \quad($ for $t>9)$
M1 A1
car level with bike when $s_{\mathrm{M}}=s_{\mathrm{C}}$ i.e. $75+30 t-150=162+36 t-324$
M2
$t=14.5$ seconds
A1
4. (a)

(b) at max. height, $v=0$; use $v^{2}=u^{2}+2 a s$ with $a=-9.8, u=24$ $0=576-19.6 s \quad \therefore s=29.387 \ldots$
start value 2.5 m , so max. height $=31.89 \mathrm{~m}$. (nearest cm)
M1 A1
A1
(c) use $v^{2}=u^{2}+2 a s$ with $a=^{-} 9.8, u=24$ and $s=^{-} 2.5$ (up is +ve)

M1
$v^{2}=576+49=625$
M1 A1
so $v= \pm 25$ i.e. speed $=25 \mathrm{~ms}^{-1}$ downwards
(d) use $v=u+a t$ with $v=25, u={ }^{-} 24 a=9.8$ (down is +ve)

M1
$25={ }^{-} 24+9.8 t \therefore t=5$
M1 A1
5. (a) $s=122.5, u=0, a=\mathrm{g}$ use $s=u t+\frac{1}{2} a t^{2}$
$122.5=4.9 t^{2} \Rightarrow t=5$
(b) $v^{2}=u^{2}+2 a s=0+2 g(122.5)$
$v=49 \mathrm{~ms}^{-1}$
(c) $s=u(t-2)+\frac{1}{2} a(t-2)^{2}$

Jim must hit before $t=5$ i.e. $122.5=3 u+4.9(3)^{2}$
$3 u=78.4 \Rightarrow u=26.1 \mathrm{~ms}^{-1}$
A1
(d) e.g. u larger as tennis ball would have experienced more air resistance due to greater speed / large surface area for mass

B2
6. (a) $t=\frac{116-84}{2}=16$ seconds
(b) velocity Δ
$\left(\mathrm{ms}^{-1}\right) 24$

(c) dist. $=$ area under graph $=\frac{1}{2}(116+84)(24)=2400 \mathrm{~m}$

M2 A1 (7)
7. (a) $u=21, v=0$ (at max. ht.), $a={ }^{-} g$ use $v^{2}=u^{2}+2 a s$

M1
$0=21^{2}-2 g s \therefore s=22.5 \mathrm{~m}$
M1 A1
ball starts from 1.9 m , so it reaches 24.4 m above ground level
A1
(b) $s=7.5-1.9=5.6, u=21, a=^{-} g$, use $s=u t+\frac{1}{2} a t^{2}$

M1
$5.6=21 t-4.9 t^{2}$ i.e. $7 t^{2}-30 t+8=0$
M1 A1
$(7 t-2)(t-4)=0$ giving $t=\frac{2}{7}, t=4$
M1 A1
\therefore Barbara waits for $3 \frac{5}{7}(\approx 3.71)$ seconds
A1
8. (a) $u=10.5, v=0, a=^{-}$g use $v^{2}=u^{2}+2 a s$
$0=110.25-19.6 s \Rightarrow s=5.625$
ball starts from 0.6 m , so it reaches 6.225 m above ground level
A1
(b) $s=2-0.6=1.4, u=10.5, a=^{-} \mathrm{g}$, use $s=u t+\frac{1}{2} a t^{2}$

M1
$10.5 t-4.9 t^{2}>1.4$ i.e. $7 t^{2}-15 t+2<0$
M1 A1
$(7 t-1)(t-2)<0$ leading to $\frac{1}{7}<t<2$
M1 A1
ball is above ground for $\frac{13}{7}(\approx 1.86)$ seconds
A1
9. (a) e.g. since $\operatorname{acc}^{\mathrm{n}}$ and decel ${ }^{\mathrm{n}}$ are uniform, time for decel $\mathrm{l}^{\mathrm{n}}=\frac{1}{1.5}$ time for acc $^{\mathrm{n}}$
\therefore decel $^{\mathrm{n}}=4$ seconds, so total time $=6+50+4=60$ seconds
(b) velocity

(c) area under graph $=\frac{1}{2}(6)(V)+50 V+\frac{1}{2}(4)(V)=1320$
$55 V=1320$ so $V=24 \mathrm{~ms}^{-1}$
(d) car accelerates more quickly at first, but acceleration decreases
throughout the six seconds
B2
10. (a) $u=0, s=2200-240=1960, a=9.8$ use $v^{2}=u^{2}+2 a s$ $v^{2}=0+2(9.8)(1960)$ so $v=196 \mathrm{~ms}^{-1}$

M2 M1 A1
(b) $s=u t+\frac{1}{2} a t^{2}$

M1
$1960=0+4.9 t^{2} \Rightarrow t=20$ seconds
M1 A1
(c) $140-20=120$ seconds to travel 240 m M1 speed $=2 \mathrm{~ms}^{-1}$ A1
(d) e.g. no air resistance; velocity on opening parachute will not immediately reduce B2 e.g. if air resistance included, value in (a) would be much lower and consequently value in (b) much higher B2
11.

(b) using $v=u+a t$ with $v=2 U, u=5 U, t=6$ gives $1^{\text {st }}$ decel. $=\frac{1}{2} U \mathrm{~ms}^{-2}$
using $v=u+a t$ with $v=0, u=2 U, t=2$ gives $2^{\text {nd }}$ decel. $=U \mathrm{~ms}^{-2}$
M1 A1
(c) area under graph $=$ dist. travelled $=220 \mathrm{~m}$

M1
$\frac{1}{2}(6)(3 U)+22(2 U)+\frac{1}{2}(2)(2 U)=220$
M1 A2
$55 U=220 \therefore U=4 \mathrm{~ms}^{-1}$
M1 A1 (12)

12
(a) use of $s=\left(\frac{u+v}{2}\right) t$ with $u=5, v=20$ and $t=30$

M1
$s=\frac{25}{2} \times 30=375 \mathrm{~m}$ M1 A1
(b) $\quad a=\frac{\Delta v}{t}=\frac{20-5}{30}=0.5, s=187.5, u=5$ use $s=u t+\frac{1}{2} a t^{2}$

M1 A1
$187.5=5 t+0.25 t^{2} \therefore t^{2}+20 t-750=0$
M1
use quadratic formula to give $t={ }^{-} 10 \pm 5 \sqrt{ } 34$
take +ve root $\therefore t=19.15$ seconds (2 dp)
M1 A1
A1
(9)
13. (a) For $Q: a=\frac{\Delta v}{\underline{t}}=\quad \frac{6-0}{6}=1$
$u=0, v=4$, use $v=u+a t: 4=0+1 t$ i.e. $t=4$ seconds
M1
M1 A1
(b) speed
$\left(\mathrm{ms}^{-1}\right)$

(c) Q will catch P when area under Q graph = area under P graph

$$
\therefore \frac{1}{2}(6)(6)+6(t-6)=4 t
$$

M1
i.e. $18+6 t-36=4 t \therefore 2 t=18 \therefore t=9$

M1 A1
after 9 seconds, P has travelled $4 \times 9=36 \mathrm{~cm}$,
$\therefore Q$ reaches top first if $x>36$
M1 A1
(11)

