

Equations and Inequalities - Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 05 Q4

Question number	Scheme	Marks
	$x^2 + 2(2-x) = 12$ or $(2-y)^2 + 2y = 12$ (Eqn. in x or y only) $x^2 - 2x - 8 = 0$ or $y^2 - 2y - 8 = 0$ (Correct 3 term version) (x-4)(x+2) = 0 $x =$ or $(y-4)(y+2) = 0$ $y =x = 4$, $x = -2$ or $y = 4$, $y = -2y = -2$, $y = 4$ or $x = -2$, $x = 4$ (M: attempt one, A: both)	M1 A1 M1 A1 M1 A1
	A1ft requires 3 s.f. accuracy if not exact. "Non-algebraic" solutions: No working, and only one correct solution pair found (e.g. $x = 4$, $y = -2$): M0 A0 M0 A0 M1 A1 No working, and both correct solution pairs found, but not demonstrated: M0 A0 M1 A1 M1 A1 Both correct solution pairs found, and demonstrated, perhaps in a table of values: Full marks	M1 Aift (6)

Question 2: Jan 05 Q10

$x = 1 + 2y \text{ and sub} \rightarrow (1 + 2y)^2 + y^2 = 29$ $\Rightarrow 5y^2 + 4y - 28(= 0)$ i.e. $(5y + 14)(y - 2) = 0$ $(y =)2 \text{ or } -\frac{14}{5} \qquad \text{(o.e.)}$ (be	M1 A1 M1 A1
$y = 2 \Rightarrow x = 1 + 4 = 5$; $y = -\frac{14}{5} \Rightarrow x = -\frac{23}{5}$ (o.e)	M1A1 f.t. (6)
1 st M1 Attempt to sub leading to equation in 1 variable 1 st A1 Correct 3TQ (condone = 0 missing) 2 nd M1 Attempt to solve 3TQ leading to 2 values for y. 2 nd A1 Condone mislabelling $x = \text{for } y = \dots$ but then M0A0 in part (c). 3 rd M1 Attempt to find at least one x value 3 rd A1 f.t. f.t. only in $x = 1 + 2y$ (3sf if not exact) Both values	
N.B. False squaring (e.g. $y = x^2 + 4y^2 = 1$) can only score the last 2 marks.	

www.naikermaths.com

Question 3: June 05 Q6

Question Number	Scheme	Marks
(a)	$6x+3 > 5-2x \qquad \Rightarrow 8x > 2$ $x > \frac{1}{4} \text{ or } 0.25 \text{ or } \frac{2}{8}$	M1 A1
	4 0	(2)
(b)	(2x-1)(x-3) (> 0)	M1
	Critical values $x = \frac{1}{2}$, 3 (both)	A1
	٨ الله	
	Choosing "outside" region	M1
	$x > 3$ or $x < \frac{1}{2}$	A1 f.t.
	_ 1 1	(4)
(c)	$x > 3$ or $\frac{1}{4} < x < \frac{1}{2}$	B1f.t. B1f.t. (2)
		(8)
(a)	M1 Multiply out and collect terms (allow one slip and allow use of = here)	
(b)	1 st M1 Attempting to factorise $3TQ \rightarrow x =$	
	2 nd M1 Choosing the outside region	
	2^{nd} A1 f.t. f.t. their critical values N.B. $(x>3, x>\frac{1}{2} \text{ is M0A0})$	
	For $p < x < q$ where $p > q$ penalise the final A1 in (b).	
(c)	f.t. their answers to (a) and (b) 1 st B1 a correct f.t. leading to an <u>infinite</u> region 2 nd B1 a correct f.t. leading to a <u>finite</u> region	
	Penalise \leq or \geq once only at first offence.	
	e.g. (a) (b) (c) Mark	
	$x > \frac{1}{4}$ $\frac{1}{2} < x < 3$ $\frac{1}{2} < x < 3$ B0 B1 $x > \frac{1}{4}$ $x > 3$, $x > \frac{1}{2}$ $x > 3$ B1 B0	
	$x > \frac{1}{x}$ $x > 3, x > \frac{1}{x}$ $x > 3$ B1 B0	

Question 4: June 06 Q2

Question number		Scheme		Marks	š
	Critical Valu	<u>es</u>			
	$(x\pm a)(x\pm b)$	with $ab = 18$ or $x = \frac{7 \pm \sqrt{49 - 72}}{2}$ or	$\left(x-\frac{7}{2}\right)^2\pm\left(\frac{7}{2}\right)^2-18$	M1	
	(x-9)(x+2)	or $x = \frac{7 \pm 11}{2}$ or $x = \frac{7}{2} \pm \frac{11}{2}$	1	A1	
	Solving Inequ	uality x > 9 or x < -2	Choosing "outside"	M1	
				A1	4
	1 st M1 For attempting to find critical values. Factors alone are OK for M1, x = appearing somewhere for the form written for completing the square 1 st A1. Factors alone are OK. Formula or completing the square need x = a				
	2 nd M1	For choosing outside region. Can f.t. the They must have two different critical variations.			
		-2>x>9 is M1A0 but ignore if it follows:	llows a correct version		
		-2 < x < 9 is M0A0 whatever the diagram	m looks like.		
	2 nd A1	Use of≥ in final answer gets A0			

Question 5: Jan 07 Q4

Question number		Schem	ne			Marks	
	$(x-2)^2 = x^2 - 4x + 4$	or	$(y+2)^2 = y^2$	+4y+4	M: 3 or 4 terms	M1	
	$(x-2)^2 + x^2 = 10$	or	$y^2 + (y+2)^2$	=10	M: Substitute	M1	
	$2x^2 - 4x - 6 = 0$	or	$2y^2 + 4y - 6 =$	= 0	Correct 3 terms	A1	
	(x-3)(x+1) = 0, $x =(The above factorisations ma$		(y+3)(y-1) appear as $(2x-1)$		quivalent).	M1	
	x = 3 $x = -1$	or	y = -3 $y = 1$			A1	
	y=1 $y=-3$	or	x = -1 $x = 3$			M1 A1	(7)
	(Allow equivalent fractions s	such as:	$x = \frac{6}{2} \text{ for } x = 3$	3).			7
	1^{st} M: 'Squaring a bracket', i or y^2 term.	needs 3	or 4 terms, one	of which mus	t be an x ²		
	2 nd M: Substituting to get an	equation	n in one variab	le (awarded ge	enerously).		
	1st A: Accept equivalent form	ns, e.g.	$2x^2 - 4x = 6.$				
	3 rd M: Attempting to solve a	3-term	quadratic, to ge	t 2 solutions.			
	4 th M: Attempting at least on	e y valu	e (or x value).				
	If y solutions are given as x possible to score M1 M1A1			enalise at the	end, so that it is		
	Strict "pairing of values" at t	he end i	is <u>not</u> required.				
	"Non-algebraic" solutions: No working, and only one co	orrect so	lution pair four		y = 1): 40 A0 M1 A0		
	No working, and both correct			but not demon M0 M0 A0 N	strated: 11 A1 M1 A1		
	Both correct solution pairs for	ound, an	d demonstrated	l, perhaps in a Full marks	table of values:		
	Squaring individual terms: e.	g.	1.60				
	$y^2 = x^2 + 4$		M0	(F :			
	$x^2 + 4 + x^2 = 10$ $x - \sqrt{3}$		M1 A0 M0 A0	(Eqn. in one	variable) 3-term quad.)		
	$x = \sqrt{3}$ $y^2 = x^2 + 4 = 7$ $y = \sqrt{3}$	7	M1 A0	(Attempting	- 1		

Question 6: June 07 Q6

Question number	Scheme	Marl	cs
	(a) $2x^2 - x(x-4) = 8$	M1	
	$x^2 + 4x - 8 = 0 \tag{*}$	A1cso	(2)
	(b) $x = \frac{-4 \pm \sqrt{4^2 - (4 \times 1 \times -8)}}{2}$ or $(x+2)^2 \pm 4 - 8 = 0$	M1	
	$x = -2 \pm \text{(any correct expression)}$	A1	
	$\sqrt{48} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$ or $\sqrt{12} = \sqrt{4}\sqrt{3} = 2\sqrt{3}$	B1	
	$y = (-2 \pm 2\sqrt{3}) - 4$ M: Attempt at least one y value	M1	
	$x = -2 + 2\sqrt{3}$, $y = -6 + 2\sqrt{3}$ $x = -2 - 2\sqrt{3}$, $y = -6 - 2\sqrt{3}$	A1	(5)
	\$2		7
	this line must be seen. E.g. $2x^2 - x^2 \pm 4x = 8$ is OK for M1. Alcso for correctly simplifying to printed form. No incorrect working seen. The These two marks can be scored in part (b). For multiple attempts pic	k best.	
(b)	1 st M1 for use of correct formula. If formula is not quoted then a fully correct suffered. Condone missing x = or just + or – instead of + for M1.	bstitution is	•
	For completing the square must have as printed or better.		
	If they have $x^2-4x-8=0$ then M1 can be given for $(x-2)^2\pm 4-8=0$.		
	1 st A1 for $-2 \pm$ any correct expression. (The \pm is required but $x =$ is not)		
1	B1 for simplifying the surd e.g. $\sqrt{48} = 4\sqrt{3}$. Must reduce to $b\sqrt{3}$ so $\sqrt{16}\sqrt{3}$	or $\sqrt{4}\sqrt{3}$ a	re OK
	2 nd M1 for attempting to find at least one y value. Substitution into one of the giv	en equation	ıs
	and an attempt to solve for y .		
	2 nd A1 for correct y answers. Pairings need <u>not</u> be explicit but they must say which is x and which y.		
	Mis-labelling x and y loses final A1 only.		

Question 7: June 08 Q6

Question Number	Scheme	Marks
(a)	5	
		B1
	-2.5	M1
		A1 (3)
(b)	$2x + 5 = \frac{3}{x}$	M1
	$2x^2 + 5x - 3 = 0$ or $2x^2 + 5x = 3$	A1
	(2x-1)(x+3) = 0	M1
	$x = -3$ or $\frac{1}{2}$	A1
	$y = \frac{3}{-3}$ or $2 \times (-3) + 5$ or $y = \frac{3}{\frac{1}{2}}$ or $2 \times (\frac{1}{2}) + 5$	M1
	Points are $(-3,-1)$ and $(\frac{1}{2},6)$ (correct parts)	airings) A1 ft (6)
		(9 marks)

Question 8: June 09 Q4

Question Number	Scheme	Mark	s
Q (a)	$5x > 10$, $x > 2$ [Condone $x > \frac{10}{2} = 2$ for M1A1]	M1, A1	(2)
(b)	$(2x+3)(x-4) = 0$, Critical values are $-\frac{1}{2}$ and 4	M1, A1	
	$-\frac{3}{2} < x < 4$	M1 A1ft	
(c)	2 < x < 4	B1ft	(4) (1) [7]
(a)	M1 for attempt to collect like terms on each side leading to $ax > b$, or $ax < b$, or $ax = b$		
(b)	Must have a or b correct so eg $3x > 4$ scores M0 1^{st} M1 for an attempt to factorize or solve to find critical values. Method must potentially give 2 critical values 1^{st} A1 for $-\frac{3}{2}$ and 4 seen. They may write $x < -\frac{3}{2}$, $x < 4$ and still get this A1 2^{nd} M1 for choosing the "inside region" for their critical values 2^{nd} A1ft follow through their 2 distinct critical values Allow $x > -\frac{3}{2}$ with "or" "," " \cup " " " $x < 4$ to score M1A0 but "and" or " \cap " "score M1A1 $x \in (-\frac{3}{2}, 4)$ is M1A1 but $x \in [-\frac{3}{2}, 4]$ is M1A0. Score M0A0 for a number line or graph only		
(c)	B1ft Allow if a correct answer is seen or follow through their answer to (a) and their answer to (b) but their answers to (a) and (b) must be regions. Do not follow through single values. If their follow through answer is the empty set accept Ø or {} or equivalent in words If (a) or (b) are not given then score this mark for cao NB You may see x<4 (with anything or nothing in-between) x < -1.5 in (b) and empty set in (c) for B1ft Do not award marks for part (b) if only seen in part (c) Use of ≤ instead of < (or ≥ instead of >) loses one accuracy mark only, at first occurrence.		

Question 9: Jan 10 Q5

Question number	Scheme	Marks
number	$y = 3x - 2$ $(3x - 2)^2 - x - 6x^2 (= 0)$	M1
	$9x^2 - 12x + 4 - x - 6x^2 = 0$	
	$3x^2 - 13x + 4 = 0$ (or equiv., e.g. $3x^2 = 13x - 4$)	M1 A1cso
	$(3x-1)(x-4) = 0$ $x = \dots$ $x = \frac{1}{3}$ (or <u>exact</u> equivalent) $x = 4$	M1 A1
	y = -1 $y = 10$ (Solutions need not be "paired")	M1 A1
		[7
	 1st M: Obtaining an equation in x only (or y only). Condone missing "= 0" Condone sign slips, e.g. (3x + 2)² - x - 6x² = 0, but not other algebraic mistakes (such as squaring individual terms see bottom of page). 2nd M: Multiplying out their (3x - 2)², which must lead to a 3 term quadratic, i.e. ax² + bx + c, where a ≠ 0, b ≠ 0, c ≠ 0, and collecting terms. 3rd M: Solving a 3-term quadratic (see general principles at end of scheme). 2nd A: Both values. 4th M: Using an x value, found algebraically, to attempt at least one y value (or using a y value, found algebraically, to attempt at least one x value) allow b.o.d. for this mark in cases where the value is wrong but working is not shown. 3rd A: Both values. If y solutions are given as x values, or vice-versa, penalise at the end, so that it 	
	is possible to score M1 M1A1 M1 A1 M0 A0.	
	"Non-algebraic" solutions:	
	No working, and only one correct solution pair found (e.g. $x = 4$, $y = 10$):	
	M0 M0 A0 M0 A0 M1 A0 No working, and both correct solution pairs found, but not demonstrated:	
	M0 M0 A0 M1 A1 M1 A1	
	Both correct solution pairs found, and demonstrated: Full marks	
	Alternative:	
	$x = \frac{y+2}{3}$ $y^2 - \frac{y+2}{3} - 6\left(\frac{y+2}{3}\right)^2 = 0$ M1	
	$y^2 - \frac{y+2}{3} - 6\left(\frac{y^2+4y+4}{9}\right) = 0$ $y^2 - 9y - 10 = 0$ M1 A1	
	(y+1)(y-10) = 0 $y =$ $y = -1$ $y = 10$ M1 A1	
	$x = \frac{1}{3}$ $x = 4$ M1 A1	
	Squaring each term in the first equation, e.g. $y^2 - 9x^2 + 4 = 0$, and using this to obtain an equation in x only could score at most 2 marks: M0 M0 A0 M1 A0 M1 A0.	

Question 10: June 10 Q3

Number	Scheme	Marks	
(a)	$3x - 6 < 8 - 2x \rightarrow 5x < 14$ (Accept 5	x-14<0 (o.e.)) M1	
	$x < 2.8$ or $\frac{14}{5}$ or $2\frac{4}{5}$	(condone ≤) A1	(2)
(b)	Critical values are $x = \frac{7}{2}$ and -1	B1	
	Choosing "inside" $-1 < x < \frac{7}{2}$	M1 A1	(3)
(c)	-1 < x < 2.8	B1ft	(1)
	Accept any exact equivalents to -	1, 2.8, 3.5	6
	Notes		
(b)	B1 for both correct critical values. (May be implied by M1 ft their values and choose the "inside" region A1 for fully correct inequality (Must be in part (b): do Condone seeing x < -1 in working provided -1 <	not give marks if only seen in (c))	
	e.g. $x > -1$, $x < \frac{7}{2}$ or $x > -1$ "or" $x < \frac{7}{2}$ or $x > -1$ "b	elank space" $x < \frac{7}{2}$ score M1A0	
	e.g. $x>-1$, $x<\frac{7}{2}$ or $x>-1$ "or" $x<\frac{7}{2}$ or $x>-1$ "b BUT allow $x>-1$ and $x<\frac{7}{2}$ to score M1A1 (the "and Also $\left(-1,\frac{7}{2}\right)$ will score M1A1 NB $x<-1,x<\frac{7}{2}$ is of course M0A0 and a number line Allow 3.5 instead of $\frac{7}{2}$	lank space" $x < \frac{7}{2}$ score M1A0 "must be seen)	
(c)	BUT allow $x > -1$ and $x < \frac{7}{2}$ to score M1A1 (the "and Also $\left(-1, \frac{7}{2}\right)$ will score M1A1 NB $x < -1, x < \frac{7}{2}$ is of course M0A0 and a number line	plank space" $x < \frac{7}{2}$ score M1A0 "must be seen) even with "open" ends is M0A0 or ft their answers to part (a) and not single values. (b)	
(c)	BUT allow $x > -1$ and $x < \frac{7}{2}$ to score M1A1 (the "and Also $\left(-1, \frac{1}{2}\right)$ will score M1A1 NB $x < -1, x < \frac{7}{2}$ is of course M0A0 and a number line Allow 3.5 instead of $\frac{7}{2}$ B1ft for $-1 < x < 2.8$ (ignoring their previous answers) and part (b) provided both answers were regions at Allow use of "and" between inequalities as in part	plank space" $x < \frac{7}{2}$ score M1A0 "must be seen) even with "open" ends is M0A0 or ft their answers to part (a) and not single values. (b) words or the symbol \varnothing . ave their answer as $x < -1$,	

Question 11: June 11 Q4

Question Number	Scheme	Marks
	T To the second	
	Either Or	
	$y^2 = 4 - 4x + x^2 x^2 = 4 - 4y + y^2$	M1
	$4(4-4x+x^2)-x^2=11 4y^2-(4-4y+y^2)=11$	M1
	or $4(2-x)^2 - x^2 = 11$ or $4y^2 - (2-y)^2 = 11$	
	$3x^2 - 16x + 5 = 0$ $3y^2 + 4y - 15 = 0$ Correct 3 terms	A1
	(3x-1)(x-5) = 0, $x = (3y-5)(y+3) = 0$, $y =$	M1
	$x = \frac{1}{3}$ $x = 5$ $y = \frac{5}{3}$ $y = -3$	A1
	$y = \frac{5}{3}$ $y = -3$ $x = \frac{1}{3}$ $x = 5$	M1 A1
	Notes	(
	1st M: Squaring to give 3 or 4 terms (need a middle term)	1
	2 nd M: Substitute to give quadratic in one variable (may have just two term	ns)
	3 rd M: Attempt to solve a 3 term quadratic.	
	4^{th} M: Attempt to find at least one y value (or x value). (The second variable	le)
	This will be by substitution or by starting again.	
	If y solutions are given as x values, or vice-versa, penalise accuracy, so that to score M1 M1A1 M1 A0 M1 A0.	nt it is possible
	"Non-algebraic" solutions:	
	No working, and only one correct solution pair found (e.g. $x = 5$, $y = -3$): M0 M0 A0 M1 A0 M	1 A0
	No working, and both correct solution pairs found, but not demonstrated: M0 M0 A0 M1 A1 M	1 A1
	Both correct solution pairs found, and demonstrated: Full marks are possible review)	ole (send to