

Pulleys - Edexcel Past Exam Questions MARK SCHEME

Question 1 Jan 05 Q5

Question Number	Scheme	Marks
5	(a) 's = $ut + \frac{1}{2}at^{2}$ for B: 0.4 = $\frac{1}{2}a(0.5)^2$	M1 A1
	$a = 3.2 \mathrm{m s^{-2}}$	A1 (3)
	(b) N2L for B: $0.8g - T = 0.8 \times 3.2$	M1 A1√ ↓
	T = 5.28 or 5.3 N	M1 A1 (4)
	(c) Same acceleration for A and B.	B1 (1)

Question 2 June 07 Q6

Question Number	Scheme	- 6	Marks	
	(a) $s = ut + \frac{1}{2}at^2 \implies 3.15 = \frac{1}{2}a \times \frac{9}{4}$		M1 A1	
	$a = 2.8 \text{ (m s}^{-2}) *$	cso	A1	(3)
	(b) N2L for P: $0.5g - T = 0.5 \times 2.8$		M1 A1	
	T = 3.5 (N)		A1	(3)
	(c) N2L for Q : $T - mg = 2.8m$		M1 A1	
	$m = \frac{3.5}{12.6} = \frac{5}{18}$	cso	DM1 A1	(4)
	(d) The acceleration of P is equal to the acceleration of Q .		B1	(1)
	(e) $v = u + at \implies v = 2.8 \times 1.5$ (or $v^2 = u^2 + 2as \implies v^2 = 2 \times 2.8 \times 3.15$) $(v^2 = 17.64, v = 4.2)$		M1 A1	
	$v = u + at \implies 4.2 = -4.2 + 9.8t$		DM1 A1	
	$t = \frac{6}{7}$, 0.86, 0.857 (s)		DM1 A1	(6)
	· ·			[17]

Question 3 Jan 08 Q7

Scheme	Marks	
$B: \qquad 2mg - T = 2m \times 4g/9$	M1 A1	
$\Rightarrow T = 10mg/9$	A1 (3)	
When B hits: $v^2 = 2 \times 4g/9 \times h$	M1 A1	
Deceleration of A after B hits: $ma = \mu mg \implies a = 2g/3$	M1 A1 f.t.	
Speed of A at P: $V^2 = 8gh/9 - 2 \times 2g/3 \times h/3$	DM1	
$\Rightarrow V = \frac{2}{3}\sqrt{(gh)}$	A1 (6)	
Same tension on A and B	B1 (1)	
	15	
	$\Rightarrow T = \underline{10mg/9}$ When B hits: $v^2 = 2 \times 4g/9 \times h$ Deceleration of A after B hits: $ma = \mu mg \Rightarrow a = 2g/3$ Speed of A at P: $V^2 = 8gh/9 - 2 \times 2g/3 \times h/3$ $\Rightarrow V = \frac{2}{3} \sqrt{(gh)}$	

Question 4 Jan 10 Q6

Question Number	Scheme	Mar	ks
	(a) N2L A: $5mg - T = 5m \times \frac{1}{4}g$	M1 A1	
	$T = \frac{15}{4} mg *$ cso	A1	(3)
	(b) N2L B: $T - kmg = km \times \frac{1}{4}g$	M1 A1	
	k = 3	A1	(3)
	(c) The tensions in the two parts of the string are the same	B1	(1)
	(d) Distance of A above ground $s_1 = \frac{1}{2} \times \frac{1}{4} g \times 1.2^2 = 0.18g (\approx 1.764)$	M1 A1	
	Speed on reaching ground $v = \frac{1}{4}g \times 1.2 = 0.3g \ (\approx 2.94)$	M1 A1	
	For B under gravity $(0.3g)^2 = 2gs_2 \implies s_2 = \frac{(0.3)^2}{2}g (\approx 0.441)$	M1 A1	
	$S = 2s_1 + s_2 = 3.969 \approx 4.0$ (m)	A1	(7) [14]

Question 5 June 10 Q8

Question Number	Scheme	Marks	
(a)	$(\downarrow)0.4g - T = 0.4a$	M1 A1	
Mark	$(\uparrow)T - 0.3g = 0.3a$	M1 A1	
together	solving for T	DM1	
	T = 3.36 or 3.4 or 12g/35 (N)	A1 (6)	
(b)	0.4g - 0.3g = 0.7a	DM1	
	$a = 1.4 \text{ m s}^{-2}, g/7$	A1 (2)	
(c)	$(\uparrow)v = u + at$		
	$v = 0.5 \times 1.4$	M1	
	= 0.7	A1 ft on a	
	$(\uparrow)s = ut + \frac{1}{2}at^2$		
	$s = 0.5 \times 1.4 \times 0.5^2$	M1	
	= 0.175	A1 ft on a	
	$(\downarrow)s = ut + \frac{1}{2}at^2$		
	$1.175 = -0.7t + 4.9t^2$	DM1 A1 ft	
	$4.9t^2 - 0.7t - 1.175 = 0$		
	$t = \frac{0.7 \pm \sqrt{0.7^2 + 19.6 \times 1.175}}{}$	DM1 A1 cao	
	9.8		
	= 0.5663or		
	Ans 0.57 or 0.566 s	A1 cao (9)	