

Quadratic Functions - Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 05 Q3

Question number	Scheme		М	arks
	Attempt to use discriminant $b^2 - 4ac$ (Need not be equated to zero)		М1	
	$144 - 4 \times k \times k = 0$		A1	
	Attempt to solve for k		M1	
	k = 6		Al	(4) 4
	Alternative for first 2 marks			-
	Attempt to complete square $(x \pm p)^2 \pm q \pm c$, $p \neq 0$, $q \neq 0$ $1 - \frac{36}{k^2} = 0$ or equiv.	M1 A1		
	Other alternatives (i) $x^2 + \frac{12}{k}x + 1$ must be equivalent to $(x+1)^2$	M1 A1		
	Compare coefficients and attempt to solve for k: $\frac{12}{k} = 2$ $k = 6$	MI A1		
	(ii) Finding the root first, e.g. $(\sqrt{k}x + \sqrt{k})^2 = 0$, so $x = -1$ Substitute the root to find k, $k = 6$	M1 A1 M1 A1		
	Answer only Scores 2 marks: M0 A0 M1 A1 The first two marks would only be scored if solution then justifies that k equal roots.	= 6 gives		

Question 2: Jan 05 Q10

Question number	Scheme	Marks
	(a) $x^2 - 6x + 18 = (x - 3)^2, +9$	B1, MI A1 (3)
	(b) " "U"-shaped parabola	M1
	. Vertex in correct quadrant	Alft
	<i>P</i> : (0, 18) (or 18 on y-axis)	B1
	Q: (3, 9)	B1ft (4)
	(c) $x^2 - 6x + 18 = 41$ or $(x-3)^2 + 9 = 41$	M1
	Attempt to solve 3 term quadratic $x = \dots$	M1
	$x = \frac{6 \pm \sqrt{36 - (4 \times -23)}}{2}$ (or equiv.)	A1
	$\sqrt{128} = \sqrt{64} \times \sqrt{2}$ (or equiv. surd manipulation)	M1
	$3 + 4\sqrt{2}$ (Ignore other value)	A1 (5)
		12
	(a) M1 requires $(x \pm a)^2 \pm b \pm 18$, $a \neq 0$, $b \neq 0$ Answer only: full marks.	

Quadratic Functions

Question 3: June 05 Q3

Question Number	Scheme		Marks
(a)	$x^{2} - 8x - 29 \equiv (x - 4)^{2} - 45$ $(x \pm 4)^{2}$ $(x - 4)^{2} - 16 + (-29)$ $(x \pm 4)^{2} - 45$	M1 A1 A1	
			(3)
ALT	Compare coefficients $-8 = 2a$ equation for a $a = -4$ <u>AND</u> $a^2 + b = -29$ b = -45	M1 A1 A1	
			(3)
(b)	$(x-4)^{2} = 45$ $\Rightarrow x-4 = \pm\sqrt{45}$ $x = 4 \pm 3\sqrt{5}$ (follow through their <i>a</i> and <i>b</i> from (a)) (<i>c</i> = 4) (<i>d</i> = 3)	M1 A1 A1	(3) (6)
(a)	M1 for $(x \pm 4)^2$ or an equation for <i>a</i> .		
(b)	M1 for a full method leading to $x - 4 =$ or $x =$ A1 for <i>c</i> and A1 for <i>d</i> <u>Note</u> Use of formula that ends with $\frac{8 \pm 6\sqrt{5}}{2}$ scores M1 A1 A0 (but must be $\sqrt{5}$) i.e. only penalise non-integers by one mark.		

Question 4: Jan 06 Q10

Question number		Scheme	Marks	8
	(a) $x^2 + 2x + 3 = (x+1)^2$, +2	(a = 1, b = 2)	B1, B1	(2)
	(b)	"U"-shaped parabola	M1	
		Vertex in correct quadrant (ft from $(-a, b)$	A1ft	
		(0, 3) (or 3 on <i>y</i> -axis)	B1	(3)
	(c) $b^2 - 4ac = 4 - 12 = -8$		B1	
	Negative, so curve does not cros	ss x-axis	B 1	(2)
	(d) $b^2 - 4ac = k^2 - 12$	(May be within the quadratic formula)	M1	
	$k^2 - 12 < 0$ (Corr	ect inequality expression in any form)	A1	
	$-\sqrt{12} < k < \sqrt{12}$ (or -	$2\sqrt{3} < k < 2\sqrt{3}$)	M1 A1	(4)
			Total 11 1	nark
	(b) The B mark can be scored indep (3, 0) shown on the <i>y</i> -axis score	bendently of the sketch. It is the B1, but if not shown on the axis, it is B0.		
	(c) " no real roots" is insufficien " curve does not touch <i>x</i> -axis	t for the 2 nd B mark. " is insufficient for the 2 nd B mark.		
	(d) 2 nd M1: correct solution method			
		<u>n</u> the 2 critical values $\alpha < k < \beta$,		
	whereas $k^2 - 12 > 0$ gives " $k > -\sqrt{12}$ and $k < \sqrt{12}$ " score			
	" $k > -\sqrt{12}$ and $k < \sqrt{12}$ " scores " $k > -\sqrt{12}$ or $k < \sqrt{12}$ " scores			
	" $k > -\sqrt{12}$, $k < \sqrt{12}$ " scores N	11 A0.		
	N.B. $k < \pm \sqrt{12}$ does not score to			
	$k < \sqrt{12}$ does not score the	ne 2 nd M mark.		
	\leq instead of $<:$ Penalise only one	ce, on first occurrence.		

Question 5: June 06 Q8

Question number	Scheme	Marks
(a)	$b^{2} - 4ac = 4p^{2} - 4(3p + 4) = 4p^{2} - 12p - 16 (=0)$	M1, A1
	or $(x+p)^2 - p^2 + (3p+4) = 0 \implies p^2 - 3p - 4(=0)$	
	(p-4)(p+1) = 0	M1
	p = (-1 or) 4	A1c.s.o. (4)
(b)	$x = \frac{-b}{2a}$ or $(x+p)(x+p) = 0 \implies x =$	Ml
	x (= -p) = -4	Alf.t. (2) 6
(a)	1 st M1 For use of $b^2 - 4ac$ or a full attempt to complete the square leading	g to a 3TQ in p.
	May use $b^2 = 4ac$. One of b or c must be correct.	
	1 st A1 For a correct 3TQ in p . Condone missing "=0" but all 3 terms must	be on one side .
	2^{nd} M1 For attempt to solve their 3TQ leading to $p = \dots$	
	$2^{nd} A1$ For $p = 4$ (ignore $p = -1$).	
	$b^2 = 4ac$ leading to $p^2 = 4(3p+4)$ and then "spotting" $p = 4$ score	es 4/4.
(b)	M1 For a full method leading to a repeated root $x = \dots$	
	Alf.t. For $x = -4$ (- their p)	
	Trial and Improvement	
	M2 For substituting values of p into the equation and attempting to factor (Really need to get to $p = 4$ or -1)	orize.
	A2c.s.o. Achieve $p = 4$. Don't give without valid method being seen.	

Question 6: Jan 07 Q5

Question number	Scheme	Marks	
	<u>Use</u> of $b^2 - 4ac$, perhaps implicit (e.g. in quadratic formula)	M1	
	$(-3)^{2} - 4 \times 2 \times -(k+1) < 0 \qquad (9 + 8(k+1) < 0)$	A1	
	8k < -17 (Manipulate to get $pk < q$, or $pk > q$, or $pk = q$)	M1	
	$k < -\frac{17}{8}$ (Or equiv: $k < -2\frac{1}{8}$ or $k < -2.125$)	Aleso	(4)
			4
	1 st M: Could also be, for example, comparing or equating b^2 and $4ac$. Must be considering the <u>given</u> quadratic equation. There must <u>not</u> be x terms in the expression, but there must be a k term.		
	1 st A: Correct expression (need not be simplified) and correct inequality sign. Allow also $-3^2 - 4 \times 2 \times -(k+1) < 0$.		
	2 nd M: Condone sign or bracketing mistakes in manipulation. Not dependent on 1 st M, but should not be given for irrelevant work. M0 M1 could be scored:		
	e.g. where $b^2 + 4ac$ is used instead of $b^2 - 4ac$.		
	Special cases: 1. Where there are x terms in the discriminant expression, but then division by x^2 gives an inequality/equation in k. (This could score M0 A0 M1 A1).		
	2. Use of \leq instead of $<$ loses one A mark only, at first occurrence, so an otherwise correct solution leading to $k \leq -\frac{17}{8}$ scores M1 A0 M1 A1.		
	N.B. Use of $b = 3$ instead of $b = -3$ implies no A marks.		

Question 7: June 07 Q7

Question number	Scheme	Mark	s
	(a) Attempt to use discriminant $b^2 - 4ac$	M1	
	$k^2 - 4(k+3) > 0 \implies k^2 - 4k - 12 > 0$ (*)	Alcso	(2)
	(b) $k^2 - 4k - 12 = 0 \implies$	681	
	$(k \pm a)(k \pm b)$, with $ab = 12$ or $(k =) \frac{4 \pm \sqrt{4^2 - 4 \times 12}}{2}$ or $(k-2)^2 \pm 2^2 - 12$	M1	
	k = -2 and 6 (both) A1	
	$k < -2, k > 6$ or $(-\infty, -2); (6, \infty)$ M: choosing "outside	le' M1 A1ft	(4)
			6
	e.g. $ x + \frac{1}{2} = \frac{1}{4} - (k+3) $		
	e.g. $\left[\left[x+\frac{k}{2}\right]^2\right] = \frac{k^2}{4} - (k+3)$ A1cso Correct argument to printed result. Need to state (or imply) that $b^2 - 4a$ incorrect working seen. Must have >0. If > 0 just appears with $k^2 - 4(k$ If >0 appears on last line only with no explanation give A0. $b^2 - 4ac$ followed by $k^2 - 4k - 12 > 0$ only is insufficient so M0A0 e.g. $k^2 - 4 \times 1 \times k + 3$ (missing brackets) can get M1A0 but $k^2 + 4(k+3)$ is M0A Using $\sqrt{b^2 - 4ac} > 0$ is M0.	+3)>0 that i	
(b)	 A1cso Correct argument to printed result. Need to state (or imply) that b² - 4a incorrect working seen. Must have >0. If > 0 just appears with k² - 4(k If >0 appears on last line only with no explanation give A0. b² - 4ac followed by k² - 4k - 12 > 0 only is insufficient so M0A0 e.g. k² - 4×1×k+3 (missing brackets) can get M1A0 but k² + 4(k+3) is M0A 	+3)>0 that i 0 (wrong form	nula)
(b)	Alcso Correct argument to printed result. Need to state (or imply) that $b^2 - 4a$ incorrect working seen. Must have >0. If > 0 just appears with $k^2 - 4(k + 1) = 0$ appears on last line only with no explanation give A0. $b^2 - 4ac$ followed by $k^2 - 4k - 12 > 0$ only is insufficient so M0A0 e.g. $k^2 - 4 \times 1 \times k + 3$ (missing brackets) can get M1A0 but $k^2 + 4(k + 3)$ is M0A Using $\sqrt{b^2 - 4ac} > 0$ is M0. 1^{st} M1 for attempting to find critical regions. Factors, formula or compl 1^{st} A1 for $k = 6$ and -2 only 2^{nd} M1 for choosing the outside regions	+3)>0 that i 0 (wrong form	nula)
(b)	Alcso Correct argument to printed result. Need to state (or imply) that $b^2 - 4a$ incorrect working seen. Must have >0. If > 0 just appears with $k^2 - 4(k + 1) = 0$ appears on last line only with no explanation give A0. $b^2 - 4ac$ followed by $k^2 - 4k - 12 > 0$ only is insufficient so M0A0 e.g. $k^2 - 4 \times 1 \times k + 3$ (missing brackets) can get M1A0 but $k^2 + 4(k + 3)$ is M0A Using $\sqrt{b^2 - 4ac} > 0$ is M0. 1^{st} M1 for attempting to find critical regions. Factors, formula or compl 1^{st} A1 for $k = 6$ and -2 only 2^{nd} M1 for choosing the outside regions 2^{nd} A1f.t. as printed or f.t. their (non identical) critical values 6 < k < -2 is M1A0 but ignore if it follows a correct version	+3)>0 that i 0 (wrong forr eting the squ	nula)

Question 8: Jan 08 Q8

Question number	Scheme	Marks	
	(a) $x^{2} + kx + (8-k)$ (= 0) $8-k$ need not be bracketed $b^{2} - 4ac = k^{2} - 4(8-k)$	- M1 - M1	
	$b^{2} - 4ac = k^{2} - 4(8 - k)$ $b^{2} - 4ac < 0 \implies k^{2} + 4k - 32 < 0$ (*) (b) $(k+8)(k-4) = 0$ $k =$ $k = -8$ $k = 4$	A1cso M1 A1	(3
	Choosing 'inside' region (between the two k values) -8 < k < 4 or $4 > k > -8$	M1 A1	(4 7
	(a) 1 st M: Using the k from the right hand side to form 3-term quadratic in x ('= 0' can be implied), or attempting to complete the square $\left(x + \frac{k}{2}\right)^2 - \frac{k^2}{4} + 8 - k$ (= 0) or equiv., using the k from the right hand side. For either approach, <u>condone sign errors</u> . 1 st M may be implied when candidate moves straight to the discriminant 2 nd M: Dependent on the 1 st M. Forming expressions in k (with no x's) by using b^2 and $4ac$. (Usually seen as the discriminant $b^2 - 4ac$, but separate expressions are fine, and also allow the use of $b^2 + 4ac$. (For 'completing the square' approach, the expression must be clearly separated from the equation in x). If b^2 and $4ac$ are used in the <u>quadratic formula</u> , they must be clearly separated from the formula to score this mark. For any approach, <u>condone sign errors</u> . If the wrong statement $\sqrt{b^2 - 4ac} < 0$ is seen, maximum score is M1 M1 A0. (b) Condone the use of x (instead of k) in part (b). 1st M: Attempt to solve a 3-term quadratic equation in k. It <u>might</u> be different from the given quadratic in part (a).		
	Ignore the use of < in solving the equation. The 1 st M1 A1 can be scored if -8 and 4 are achieved, even if stated as $k < -8$, $k < 4$. <u>Allow</u> the first M1 A1 to be scored in part (a). N.B. ' $k > -8$, $k < 4$ ' scores 2 nd M1 A0 ' $k > -8$ or $k < 4$ ' scores 2 nd M1 A0		
	k > -8 and $k < 4$ scores 2 nd M1 A1 k = -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3 scores 2 nd M0 A0 Use of ≤ (in the answer) loses the final mark.		

Question 9: June 08 Q8

Question Number	Scheme	Marks
(a)	[No real roots implies $b^2 - 4ac < 0$.] $b^2 - 4ac = q^2 - 4 \times 2q \times (-1)$	M1
	So $q^2 - 4 \times 2q \times (-1) < 0$ i.e. $q^2 + 8q < 0$ (*)	A1 cso (2)
(<i>b</i>)	$q(q+8) = 0$ or $(q\pm 4)^2 \pm 16 = 0$	M1
	(q) = 0 or -8 (2 cvs)	A1
	$-8 < q < 0$ or $q \in (-8, 0)$ or $q < 0$ and $q > -8$	A1 ft (3)
		(5 marks)

Question 10: Jan 09 Q7

Number	Scheme	Marks	5
(a)	$b^2 - 4ac > 0 \Rightarrow 16 - 4k(5-k) > 0$ or equiv., e.g. $16 > 4k(5-k)$	M1A1	
	So $k^2 - 5k + 4 > 0$ (Allow any order of terms, e.g. $4 - 5k + k^2 > 0$) (*)	A1cso	(3)
(b)	<u>Critical Values</u> $(k-4)(k-1) = 0$ $k = \dots$ k = 1 or 4	M1 A1	
	$\kappa = 1$ of 4 Choosing "outside" region	M1	
	$k \le 1$ or $k \ge 4$	A1	(4)
	For this question, ignore (a) and (b) labels and award marks wherever correct work is s	een.	
(a)	 M1 for attempting to use the discriminant of the initial equation (> 0 not required, but of a, b and c in the correct formula is required). If the formula b² - 4ac is seen, at least 2 of a, b and c must be correct. If the formula b² - 4ac is <u>not</u> seen, all 3 (a, b and c) must be correct. This mark can still be scored if substitution in b² - 4ac is within the quadratic for This mark can also be scored by comparing b² and 4ac (with substitution). However, use of b² + 4ac is M0. 1st A1 for fully correct expression, possibly unsimplified, with > symbol. NB must appet the last line, even if this is simply in a statement such as b² - 4ac > 0 or 'discriming Condone a bracketing slip, e.g. 16 - 4 × k × 5 - k if subsequent work is correct and c 	formula. opear befor iant positiv	re ve`.
	2 All for a fully correct derivation with no incorrect working seen. Condone a bracketing slip if otherwise correct and convincing. $\underline{\text{Using }}\sqrt{b^2 - 4ac} > 0$: Only available mark is the first M1 (unless recovery is seen).		5.
(b)	Condone a bracketing slip if otherwise correct and convincing. <u>Using</u> $\sqrt{b^2 - 4ac} > 0$:		
(b)	Condone a bracketing slip if otherwise correct and convincing. $\underbrace{\text{Using } \sqrt{b^2 - 4ac} > 0:}_{\text{Only available mark is the first M1 (unless recovery is seen).}}$ 1 st M1 for attempt to solve an appropriate 3TQ 1 st A1 for both $k = 1$ and 4 (only the critical values are required, so accept, e.g. $k > 1$ a 2 nd M1 for choosing the "outside" region. A diagram or table alone is not sufficient. Follow through their values of k . The set of values must be 'narrowed down' to score this M mark listing ever k < 1, 1 < k < 4, k > 4 is M0. 2 nd A1 for correct answer only, condone " $k < 1, k > 4$ " and even " $k < 1$ and $k > 4$ ", but " $1 > k > 4$ " is A0. ** Often the statement $k > 1$ and $k > 4$ is followed by the correct final answer. Allow for	ything	
(b)	Condone a bracketing slip if otherwise correct and convincing. $\underline{\text{Using } \sqrt{b^2 - 4ac} > 0:$ Only available mark is the first M1 (unless recovery is seen). 1 st M1 for attempt to solve an appropriate 3TQ 1 st A1 for both $k = 1$ and 4 (only the critical values are required, so accept, e.g. $k > 1$ a 2 nd M1 for choosing the "outside" region. A diagram or table alone is not sufficient. Follow through their values of k. The set of values must be 'narrowed down' to score this M mark listing ever k < 1, 1 < k < 4, k > 4 is M0. 2 nd A1 for correct answer only, condone " $k < 1, k > 4$ " and even " $k < 1$ and $k > 4$ ", but " $1 > k > 4$ " is A0.	ything	
(b)	Condone a bracketing slip if otherwise correct and convincing. $\underbrace{\text{Using } \sqrt{b^2 - 4ac} > 0:}_{\text{Only available mark is the first M1 (unless recovery is seen).}}$ 1 st M1 for attempt to solve an appropriate 3TQ 1 st A1 for both $k = 1$ and 4 (only the critical values are required, so accept, e.g. $k > 1$ a 2 nd M1 for choosing the "outside" region. A diagram or table alone is not sufficient. Follow through their values of k . The set of values must be 'narrowed down' to score this M mark listing ever k < 1, 1 < k < 4, k > 4 is M0. 2 nd A1 for correct answer only, condone " $k < 1, k > 4$ " and even " $k < 1$ and $k > 4$ ", but " $1 > k > 4$ " is A0. ** Often the statement $k > 1$ and $k > 4$ is followed by the correct final answer. Allow for	ything Ill marks.	**

Question 11: June 09 Q6

Question Number	Scheme	Marks
Q	$b^2 - 4ac$ attempted, in terms of p . $(3p)^2 - 4p = 0$ o.e. Attempt to solve for p e.g. $p(9p-4) = 0$ Must potentially lead to $p = k, k \neq 0$ $p = \frac{4}{9}$ (Ignore $p = 0$, if seen)	M1 A1 M1 A1cso [4
	1 st M1 for an attempt to substitute into $b^2 - 4ac$ or $b^2 = 4ac$ with b or c correct Condone x's in one term only. This can be inside a square root as part of the quadratic formula for example. Use of inequalities can score the M marks only 1 st A1 for any correct equation: $(3p)^2 - 4 \times 1 \times p = 0$ or better 2 nd M1 for an attempt to factorize or solve their quadratic expression in p. Method must be sufficient to lead to their $p = \frac{4}{9}$. Accept factors or use of quadratic formula or $(p \pm \frac{2}{9})^2 = k^2$ (o.e. eg) $(3p \pm \frac{2}{3})^2 = k^2$ or equivalent work on their eqn. $9p^2 = 4p \Rightarrow \frac{9p^3}{N} = 4$ which would lead to $9p = 4$ is OK for this 2^{nd} M1 ALT Comparing coefficients M1 for $(x + \alpha)^2 = x^2 + \alpha^2 + 2\alpha x$ and A1 for a correct equation eg $3p = 2\sqrt{p}$ M1 for forming solving leading to $\sqrt{p} = \frac{2}{3}$ or better Use of quadratic/discriminant formula (or any formula) Rule for awarding M mark If the formula is quoted accept some correct substitution leading to a partially correct expression. If the formula is not quoted only award for a fully correct expression using their values.	

Question 12: Jan 10 Q10

Question number	Scheme	Marks
	(a) $(x+2k)^2$ or $\left(x+\frac{4k}{2}\right)^2$	M1
	$(x \pm F)^2 \pm G \pm 3 \pm 11k$ (where F and G are <u>any</u> functions of k, not involving x)	M1
	$(x+2k)^2 - 4k^2 + (3+1)k$ Accept unsimplified equivalents such as	A1
	$\left(x+\frac{4k}{2}\right)^2 - \left(\frac{4k}{2}\right)^2 + 3 + 11k$, and i.s.w. if necessary.	(3
	(b) Accept part (b) solutions seen in part (a).	
	$"4k^2 - 11k - 3" = 0$ $(4k + 1)(k - 3) = 0$ $k =,$	M1
	[Or, 'starting again', $b^2 - 4ac = (4k)^2 - 4(3+11k)$ and proceed to $k =$]	
	$-\frac{1}{4}$ and 3 (Ignore any inequalities for the first 2 marks in (b)).	A1
	Using $b^2 - 4ac < 0$ for no real roots, i.e. $"4k^2 - 11k - 3" < 0$, to establish inequalities involving their <u>two</u> critical values <i>m</i> and <i>n</i> (even if the inequalities are wrong, e.g. $k < m, k < n$).	M1
	$-\frac{1}{4} < k < 3$ (See conditions below) Follow through their critical values.	A1ft (4
	The final A1ft is still scored if the answer $m < k < n$ follows $k < m$, $k < n$. Using x instead of k in the final answer loses only the 2 nd A mark, (condone	-
	use of x in earlier working).	
	(c) Shape (seen in (c))	B1
	Minimum in correct quadrant, <u>not</u> touching the x-axis, <u>not</u> on the y-axis, and there must	B1
	be no other minimum or maximum. (0, 14) or 14 on y-axis. Allow (14, 0) marked on y-axis.	B1 (3
	n.b. Minimum is at (-2,10), (but there is no mark for this).	[10
	(b) 1 st M: Forming and solving a 3-term quadratic in k (usual rules see general principles at end of scheme). The quadratic must come from "b ² - 4ac", or from the "q" in part (a).	
	Using wrong discriminant, e.g. " $b^2 + 4ac$ " will score no marks in part (b).	
	 2nd M: As defined in main scheme above. 2nd A1ft: m < k < n, where m < n, for their critical values m and n. Other possible forms of the answer (in each case m < n): (i) n > k > m 	
	(ii) $k > m$ and $k < n$ In this case the word "and" must be seen (implying intersection).	
	(iii) $k \in (m, n)$ (iv) $\{k: k > m\} \cap \{k: k < n\}$ Not just a number line	
	Not just a number line. Not just $k > m$, $k < n$ (without the word "and").	
	(c) Final B1 is dependent upon a sketch having been attempted in part (c).	

Question 13: June 10 Q4

Question Number	Scheme	Mai	rks
(a)	$(x+3)^2 + 2$ or $p = 3$ or $\frac{6}{2}$ q = 2	B1 B1	(2)
(b)	U shape with min in 2^{nd} quad (Must be above x-axis and not on y=axis)	B1	
	U shape crossing y-axis at (0, 11) only (Condone (11,0) marked on y-axis)	B1	(2)
(c)	$b^2 - 4ac = 6^2 - 4 \times 11$ $= -8$	M1 A1	(2) 6
	Notes		
(a)	Ignore an "= 0" so $(x+3)^2 + 2 = 0$ can score both marks		
(b)	 The U shape can be interpreted fairly generously. Penalise an obvious V on 1st B1 The U needn't have equal "arms" as long as there is a clear min that "holds water" 1st B1 for U shape with minimum in 2nd quad. Curve need not cross the <i>y</i>-axis but minimum should NOT touch <i>x</i>-axis and should be left of (not on) <i>y</i>-axis 2nd B1 for U shaped curve crossing at (0, 11). Just 11 marked on <i>y</i>-axis is fine. The point must be marked on the sketch (do not allow from a table of values) Condone stopping at (0, 11) 		
(c)	M1 for some correct substitution into $b^2 - 4ac$. This may be as part of the quadra formula but must be in part (c) and must be only numbers (no x terms present Substitution into $b^2 < 4ac$ or $b^2 = 4ac$ or $b^2 > 4ac$ is M0		
	A1 for - 8 only.		
		s A0.	

Question 14: Jan 11 Q8

(a)	$b^{2}-4ac = (k-3)^{2}-4(3-2k)$ $k^{2}-6k+9-4(3-2k) > 0$ or $(k-3)^{2}-12+8k > 0$ or better	M1	
	$k^{2}-6k+9-4(3-2k)>0$ or $(k-3)^{2}-12+8k>0$ or better	M1	
	$k^2 + 2k - 3 > 0$ *	A1cso	
	<u></u>		(3
(b)	(k+3)(k-1)[=0]	M1	
	Critical values are $k = 1$ or -3	A1	
	(choosing "outside" region)	M1	
	$k \ge 1$ or $k \le -3$	A1 cao	
			(4
	Notes	6	
(a)	1^{st} M1 for attempt to find $b^2 - 4ac$ with one of b or c correct	22. 22.	
	2 nd M1 for a correct inequality symbol and an attempt to expand.		
	Alcso no incorrect working seen	85	
(b)	1^{st} M1 for an attempt to factorize or solve leading to $k = (2 \text{ values})$		
(-)	2^{nd} M1 for a method that leads them to choose the "outside" region. Can		
	follow through their critical values.		
	2 nd A1 Allow "," instead of "or"		
	\geq loses the final A1		
	$1 \le k \le -3$ scores M1A0 unless a correct version is seen before or after this		

Question 15: June 11 Q7

Question Number	Scheme	Marks
(a)	Discriminant: $b^2 - 4ac = (k+3)^2 - 4k$ or equivalent	M1 A1 (2
(b)	$(k+3)^2 - 4k = k^2 + 2k + 9 = (k+1)^2 + 8$	M1 A1 (2
(c)	For real roots, $b^2 - 4ac \ge 0$ or $b^2 - 4ac > 0$ or $(k+1)^2 + 8 > 0$ $(k+1)^2 \ge 0$ for all k, so $b^2 - 4ac > 0$, so roots are real for all k (or equiv.)	M1 A1 cso (2
	Notes (a) M1: attempt to find discriminant – substitution is required If formula $b^2 - 4ac$ is seen at least 2 of <i>a</i> , <i>b</i> and <i>c</i> must be correct If formula $b^2 - 4ac$ is not seen all 3 of <i>a</i> , <i>b</i> and <i>c</i> must be correct Use of $b^2 + 4ac$ is M0 A1: correct unsimplified (b) M1: Attempt at completion of square (see earlier notes) A1: both correct (no ft for this mark) (c) M1: States condition as on scheme or attempts to explain that their $(k+1)^2 + 8$ is greater than 0 A1: The final mark (A1eso) requires $(k+1)^2 \ge 0$ and conclusion. V will allow $(k+1)^2 > 0$ (or word positive) also allow $b^2 - 4ac \ge 0$	0 and conclusion