Quadratic Functions - Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 05 Q3

Question number	Scheme	Marks
	Attempt to use discriminant $b^{2}-4 a c$ (Need not be equated to zero) $144-4 \times k \times k=0$ Attempt to solve for k $\begin{equation*} k=6 \tag{4} \end{equation*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
	Alternative for first 2 marks Attempt to complete square $(x \pm p)^{2} \pm q \pm c, p \neq 0, q \neq 0$ $1-\frac{36}{k^{2}}=0$ or equiv. Other alternatives (i) $x^{2}+\frac{12}{k} x+1$ must be equivalent to $(x+1)^{2}$ Compare coefficients and attempt to solve for $k: \frac{12}{k}=2 \quad k=6$ (ii) Finding the root first, e.g. $(\sqrt{k} x+\sqrt{k})^{2}=0$, so $x=-1$ M1 AI Substitute the root to find $k, k=6$ Answer only Scores 2 marks: M0 A0 M1 A1 The first two marks would only be scored if solution then justifies that $k=6$ gives equal roots.	

Question 2: Jan 05 Q10

Question number	Scheme	Marks
	(a) $x^{2}-6 x+18=(x-3)^{2},+9$ (b) $\begin{array}{ll} & \text { "U"-shaped parabola } \\ & \text { Vertex in correct quadrant } \\ & P:(0,18) \text { (or } 18 \text { on } y \text {-axis) } \\ & Q:(3,9)\end{array}$ (c) $x^{2}-6 x+18=41$ or $(x-3)^{2}+9=41$ Attempt to solve 3 term quadratic $x=\ldots$ $x=\frac{6 \pm \sqrt{36-(4 \times-23)}}{2} \quad$ (or equiv.) $\sqrt{128}=\sqrt{64} \times \sqrt{2} \quad$ (or equiv. surd manipulation) $3+4 \sqrt{ } 2$ (Ignore other value)	B1, Ml Al M1 Alft B1 B1ft M1 M1 A1 M1 A1
	(a) M1 requires $(x \pm a)^{2} \pm b \pm 18, a \neq 0, b \neq 0$ Answer only: full marks.	

Question 3: June 05 Q3

Question Number	Scheme	Marks
(a)	$\begin{array}{rr} x^{2}-8 x-29 \equiv(x-4)^{2}-45 & (x \pm 4)^{2} \\ (x-4)^{2}-16+(-29) \\ (x \pm 4)^{2}-45 \end{array}$	$\begin{array}{ll} \hline \text { M1 } \\ & \\ \text { A1 } \\ \text { A1 } \\ & \\ & \\ \hline \end{array}$
ALT	Compare coefficients $\begin{gather*} -8=2 a \tag{3}\\ a=-4 \quad \begin{array}{c} \text { AND } \quad a^{2}+b=-29 \\ b=-45 \end{array} \end{gather*}$ equation for a	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$
(b)	$\begin{array}{lc} (x-4)^{2}=45 & \text { (follow through their } a \text { and } b \text { from (a)) } \\ \Rightarrow x-4= \pm \sqrt{45} & c=4 \\ x=4 \pm 3 \sqrt{5} & d=3 \end{array}$	M1 A1 A1 (3) (6)
(a) (b)	M1 for $(x \pm 4)^{2}$ or an equation for a. M1 for a full method leading to $x-4=\ldots$ or $x=\ldots$ Al for c and A 1 for d Note Use of formula that ends with $\frac{8 \pm 6 \sqrt{5}}{2}$ scores M1 A1 A0 (but must be $\sqrt{5}$) i.e. only penalise non-integers by one mark.	

Question 4: Jan 06 Q10

Question number	Scheme	Marks
	(a) $x^{2}+2 x+3=(x+1)^{2},+2 \quad(a=1, b=2)$ (b) "U"-shaped parabola Vertex in correct quadrant (ft from $(-a, b)$ $(0,3)$ (or 3 on y-axis) (c) $b^{2}-4 a c=4-12=-8$ Negative, so curve does not cross x-axis (d) $\begin{aligned} & b^{2}-4 a c=k^{2}-12 \\ & k^{2}-12<0 \\ & -\sqrt{12}<k<\sqrt{12} \end{aligned}$ (May be within the quadratic formula) (Correct inequality expression in any form) (or $-2 \sqrt{3}<k<2 \sqrt{3}$)	$\begin{equation*} \mathrm{B} 1, \mathrm{~B} 1 \tag{2} \end{equation*}$ M1 Alft B1 (3) B1 B1 (2) M1 A1 M1 A1 (4) Total 11 marks
	(b) The B mark can be scored independently of the sketch. $(3,0)$ shown on the y-axis scores the B1, but if not shown on the axis, it is B0. (c) ".... no real roots" is insufficient for the $2^{\text {nd }} \mathrm{B}$ mark. ".... curve does not touch x-axis" is insufficient for the $2^{\text {nd }} \mathrm{B}$ mark. (d) $2^{\text {nd }}$ M1: correct solution method for their quadratic inequality, e.g. $k^{2}-12<0$ gives k between the 2 critical values $\alpha<k<\beta$, whereas $k^{2}-12>0$ gives $k<\alpha, k>\beta$. " $k>-\sqrt{12}$ and $k<\sqrt{12}$ " scores the final M1 A1, but " $k>-\sqrt{12}$ or $k<\sqrt{12}$ " scores M1 A0, " $k>-\sqrt{12}, k<\sqrt{12}$ " scores M1 A0. N.B. $k< \pm \sqrt{12}$ does not score the $2^{\text {nd }} \mathrm{M}$ mark. $k<\sqrt{12}$ does not score the $2^{\text {nd }} \mathrm{M}$ mark. \leq instead of $<$: Penalise only once, on first occurrence.	

Question number	Scheme ${ }^{\text {arks }}$
(a)	$\begin{aligned} & b^{2}-4 a c=4 p^{2}-4(3 p+4)=4 p^{2}-12 p-16(=0) \\ & \text { or } \begin{array}{r} (x+p)^{2}-p^{2}+(3 p+4)=0 \Rightarrow p^{2}-3 p-4(=0) \\ \begin{aligned} &(p-4)(p+1)=0 \\ & p=(-1 \text { or }) 4 \end{aligned} \\ x=\frac{-b}{2 a} \text { or }(x+p)(x+p)=0 \Rightarrow x=\ldots \\ \qquad x(=-p)=\underline{-4} \end{array} \end{aligned}$
(a) (b)	

Question 6: Jan 07 Q5

Question number	Scheme	Marks
	Use of $b^{2}-4 a c$, perhaps implicit (e.g. in quadratic formula) $\begin{aligned} &(-3)^{2}-4 \times 2 \times-(k+1)<0 \\ & 8 k<-17 \\ & k<-\frac{17}{8}(9+8(k+1)<0) \\ &(\text { Manipulate to get } p k<q, \text { or } p k>q, \text { or } p k=q) \\ &\text { Or equiv } \left.: k<-2 \frac{1}{8} \text { or } k<-2.125\right) \end{aligned}$	M1 A1 M1 Alcso (4)
	$1^{\text {st }} \mathrm{M}$: Could also be, for example, comparing or equating b^{2} and $4 a c$. Must be considering the given quadratic equation. There must not be x terms in the expression, but there must be a k term. $1^{\text {st }} \mathrm{A}$: Correct expression (need not be simplified) and correct inequality sign. Allow also $-3^{2}-4 \times 2 \times-(k+1)<0$. $2^{\text {nd }} M$: Condone sign or bracketing mistakes in manipulation. Not dependent on $1^{\text {st }} \mathrm{M}$, but should not be given for irrelevant work. M0 M1 could be scored: e.g. where $b^{2}+4 a c$ is used instead of $b^{2}-4 a c$. Special cases: 1. Where there are x terms in the discriminant expression, but then division by x^{2} gives an inequality/equation in k. (This could score M0 A0 M1 A1). 2. Use of \leq instead of $<$ loses one A mark only, at first occurrence, so an otherwise correct solution leading to $k \leq-\frac{17}{8}$ scores M1 A0 M1 A1. N.B. Use of $b=3$ instead of $b=-3$ implies no A marks.	

Question 8: Jan 08 Q8

Question	Scheme	Marks
	(a) $x^{2}+k x+(8-k) \quad(=0) \quad 8-k$ need not be bracketed $\begin{align*} & b^{2}-4 a c=k^{2}-4(8-k) \\ & b^{2}-4 a c<0 \Rightarrow k^{2}+4 k-32<0 \tag{*} \end{align*}$ (b) $(k+8)(k-4)=0 \quad k=\ldots$ $k=-8 \quad k=4$ Choosing 'inside' region (between the two k values) $-8<k<4 \text { or } 4>k>-8$	M1 M1 A1cso M1 A1 M1 A1
	(a) $1^{\text {st }} \mathrm{M}$: Using the k from the right hand side to form 3-term quadratic in x ($=0$ ' can be implied), or \ldots attempting to complete the square $\left(x+\frac{k}{2}\right)^{2}-\frac{k^{2}}{4}+8-k(=0)$ or equiv. using the k from the right hand side. For either approach, condone sign errors. $1^{\text {st }} \mathrm{M}$ may be implied when candidate moves straight to the discriminant $2^{\text {nd }} \mathrm{M}$: Dependent on the $1^{\text {st }} \mathrm{M}$. Forming expressions in k (with no x 's) by using b^{2} and $4 a c$. (Usually seen as the discriminant $b^{2}-4 a c$, but separate expressions are fine, and also allow the use of $b^{2}+4 a c$. (For 'completing the square' approach, the expression must be clearly separated from the equation in x). If b^{2} and $4 a c$ are used in the quadratic formula, they must be clearly separated from the formula to score this mark. For any approach, condone sign errors. If the wrong statement $\sqrt{b^{2}-4 a c}<0$ is seen, maximum score is M1 M1 A0. (b) Condone the use of x (instead of k) in part (b). 1 st M : Attempt to solve a 3 -term quadratic equation in k. It might be different from the given quadratic in part (a). Ignore the use of $<$ in solving the equation. The $1^{\text {st }} \mathrm{M} 1 \mathrm{~A} 1$ can be scored if -8 and 4 are achieved, even if stated as $k<-8, k<4$. Allow the first M1 A1 to be scored in part (a). $\begin{aligned} \text { N.B. ' } k>-8, k<4 \text { ' scores } 2^{\text {nd }} \mathrm{M} 1 \mathrm{~A} 0 \\ \text { ' } k>-8 \text { or } k<4 \text { ' scores } 2^{\text {nd }} \mathrm{M} 1 \mathrm{~A} 0 \\ \text { ' } k>-8 \text { and } k<4 \text { ' scores } 2^{\text {nd }} \mathrm{M} 1 \mathrm{~A} 1 \\ \text { ' } k=-7,-6,-5,-4,-3,-2,-1,0,1,2,3 \text { ' scores } 2^{\text {nd }} \text { M0 A0 } \end{aligned}$ Use of \leq (in the answer) loses the final mark.	

Question 9: June 08 Q8

Question Number	Scheme	Marks
(a)	[No real roots implies $\left.b^{2}-4 a c<0.\right] b^{2}-4 a c=q^{2}-4 \times 2 q \times(-1)$	M1
(b)	So $q^{2}-4 \times 2 q \times(-1)<0$ i.e. $q^{2}+8 q<0 \quad$ (*)	A1 cso (2)
	$q(q+8)=0$ or $(q \pm 4)^{2} \pm 16=0$	M1
	(q) $=0$ or -8 (2 cvs)	A1
	$-8<q<0$ or $q \in(-8,0)$ or $q<0$ and $q>-8$	A1 ft (3)
		(5 marks)

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks \\
\hline (a)
(b) \& \begin{tabular}{l}
\(b^{2}-4 a c>0 \Rightarrow 16-4 k(5-k)>0\) or equiv., e.g. \(16>4 k(5-k)\) \\
So \(\quad k^{2}-5 k+4>0\) (Allow any order of terms, e.g. \(4-5 k+k^{2}>0\)) \\
Critical Values
\[
\begin{aligned}
(k-4)(k-1)= \& 0 \quad k=\ldots . \\
k= \& 1 \text { or } 4 \\
\& \underline{k<1} \text { or } k>4
\end{aligned}
\] \\
Choosing "outside" region
\end{tabular} \\
\hline (a)

(b) \& | For this question, ignore (a) and (b) labels and award marks wherever correct work is seen. |
| :--- |
| M1 for attempting to use the discriminant of the initial equation (>0 not required, but substitution of a, b and c in the correct formula is required). |
| If the formula $b^{2}-4 a c$ is seen, at least 2 of a, b and c must be correct. |
| If the formula $b^{2}-4 a c$ is not seen, all 3 (a, b and c) must be correct. |
| This mark can still be scored if substitution in $b^{2}-4 a c$ is within the quadratic formula. |
| This mark can also be scored by comparing b^{2} and $4 a c$ (with substitution). |
| However, use of $b^{2}+4 a c$ is M0. |
| $1^{\text {st }}$ A1 for fully correct expression, possibly unsimplified, with $>$ symbol. NB must appear before the last line, even if this is simply in a statement such as $b^{2}-4 a c>0$ or 'discriminant positive'. |
| Condone a bracketing slip, e.g. $16-4 \times k \times 5-k$ if subsequent work is correct and convincing. |
| $2^{\text {nd }} \mathrm{A} 1$ for a fully correct derivation with no incorrect working seen. |
| Condone a bracketing slip if otherwise correct and convincing. |
| Using $\sqrt{b^{2}-4 a c}>0$: |
| Only available mark is the first M1 (unless recovery is seen). |
| $1^{\text {st }}$ M1 for attempt to solve an appropriate 3 TQ |
| $1^{\text {st }} \mathrm{A} 1$ for both $k=1$ and 4 (only the critical values are required, so accept, e.g. $k>1$ and $k>4$). ${ }^{* *}$ |
| $2^{\text {nd }}$ M1 for choosing the "outside" region. A diagram or table alone is not sufficient. |
| Follow through their values of k. |
| The set of values must be 'narrowed down' to score this M mark... listing everything $k<1,1<k<4, k>4$ is M0. |
| $2^{\text {nd }}$ A1 for correct answer only, condone " $k<1, k>4$ " and even " $k<1$ and $k>4$ ", but " $1>k>4$ " is A0. |
| ** Often the statement $k>1$ and $k>4$ is followed by the correct final answer. Allow full marks. |
| Seeing 1 and 4 used as critical values gives the first M1 A1 by implication. |
| In part (b), condone working with x 's except for the final mark, where the set of values must be a set of values of k (i.e. 3 marks out of 4). |
| Use of \leq (or \geq) in the final answer loses the final mark. |

\hline
\end{tabular}

Question 11: June 09 Q6

Question Number	Scheme	Marks
Q	$b^{2}-4 a c$ attempted, in terms of p. $(3 p)^{2}-4 p=0 \quad$ o.e. Attempt to solve for p e.g. $p(9 p-4)=0$ Must potentially lead to $p=k, k \neq 0$ $p=\frac{4}{9}$ (Ignore $p=0$, if seen)	M1 A1 M1 A1cso [4]
	$1^{\text {st }}$ M1 for an attempt to substitute into $b^{2}-4 a c$ or $b^{2}=4 a c$ with b or c correct Condone x 's in one term only. This can be inside a square root as part of the quadratic formula for example. Use of inequalities can score the M marks only $1^{\text {st }} \mathrm{A} 1$ for any correct equation: $(3 p)^{2}-4 \times 1 \times p=0$ or better $2^{\text {nd }} \mathrm{M} 1$ for an attempt to factorize or solve their quadratic expression in p. Method must be sufficient to lead to their $p=\frac{4}{9}$. Accept factors or use of quadratic formula or $\left(p \pm \frac{2}{9}\right)^{2}=k^{2}$ (o.e. eg) $\left(3 p \pm \frac{2}{3}\right)^{2}=k^{2}$ or equivalent work on their eqn. $9 p^{2}=4 p \Rightarrow \frac{9 p^{2}}{R}=4$ which would lead to $9 p=4$ is OK for this $2^{\text {nd }} \mathrm{M} 1$ ALT Comparing coefficients M1 for $(x+\alpha)^{2}=x^{2}+\alpha^{2}+2 \alpha x$ and A1 for a correct equation eg $3 p=2 \sqrt{p}$ M1 for forming solving leading to $\sqrt{p}=\frac{2}{3}$ or better Use of quadratic/discriminant formula (or any formula) Rule for awarding M mark If the formula is quoted accept some correct substitution leading to a partially correct expression. If the formula is not quoted only award for a fully correct expression using their values.	

Question number	Scheme	Marks
	(a) $(x+2 k)^{2}$ or $\left(x+\frac{4 k}{2}\right)^{2}$ $(x \pm F)^{2} \pm G \pm 3 \pm 11 k \quad$ (where F and G are any functions of k, not involving x) $(x+2 k)^{2}-4 k^{2}+(3+11 k) \quad$ Accept unsimplified equivalents such as $\left(x+\frac{4 k}{2}\right)^{2}-\left(\frac{4 k}{2}\right)^{2}+3+11 k$, and i.s.w. if necessary.	M1 M1 A1 (3)
	(b) Accept part (b) solutions seen in part (a). $" 4 k^{2}-11 k-3 "=0$ $(4 k+1)(k-3)=0 \quad k=\ldots,$ [Or, 'starting again', $b^{2}-4 a c=(4 k)^{2}-4(3+11 k)$ and proceed to $k=\ldots$] $-\frac{1}{4}$ and 3 (Ignore any inequalities for the first 2 marks in (b)). Using $b^{2}-4 a c<0$ for no real roots, i.e. " $4 k^{2}-11 k-3 "<0$, to establish inequalities involving their two critical values m and n (even if the inequalities are wrong, e.g. $k<m, k<n$). $-\frac{1}{4}<k<3$ (See conditions below) Follow through their critical values. The final Alft is still scored if the answer $m<k<n$ follows $k<m, k<n$. Using x instead of k in the final answer loses only the $2^{\text {nd }} \mathrm{A}$ mark, (condone use of x in earlier working).	M1 A1 M1 A1ft (4)
	 Shape $\checkmark \quad$ (seen in (c)) Minimum in correct quadrant, not touching the x-axis, not on the y-axis, and there must be no other minimum or maximum. $(0,14)$ or 14 on y-axis. Allow (14, 0) marked on y-axis. n.b. Minimum is at $(-2,10)$, (but there is no mark for this).	B1 B1 B1 (3) [10]
	(b) $1^{\text {st }} \mathrm{M}$: Forming and solving a 3-term quadratic in k (usual rules.. see general principles at end of scheme). The quadratic must come from " $b^{2}-4 a c^{\prime}$, or from the " q " in part (a). Using wrong discriminant, e.g. " $b^{2}+4 a c$ " will score no marks in part (b). $2^{\text {nd }} \mathrm{M}$: As defined in main scheme above. $2^{\text {nd }}$ Alft: $m<k<n$, where $m<n$, for their critical values m and n. Other possible forms of the answer (in each case $m<n$): (i) $n>k>m$ (ii) $k>m$ and $k<n$ In this case the word "and" must be seen (implying intersection). (iii) $k \in(m, n)$ (iv) $\{k: k>m\} \cap\{k: k<n\}$ Not just a number line. Not just $k>m, k<n$ (without the word "and"). (c) Final B1 is dependent upon a sketch having been attempted in part (c).	

Question 13: June 10 Q4

Question 14: Jan 11 Q8

Question 15: June 11 Q7

