Straight line graphs - Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 05 Q8

Question number	Scheme	Marks	S
	(a) $p=15, q=-3$	B1 B1	(2)
	(b) Grad. of line ADC: $m = -\frac{5}{7}$, Grad. of perp. line $= -\frac{1}{m} \left(= \frac{7}{5} \right)$	B1, M1	
	Equation of <i>l</i> : $y-2=\frac{7}{5}(x-8)$	M1 A1ft	
	7x-5y-46=0 (Allow rearrangements, e.g. $5y=7x-46$)	A1	(5)
	(c) Substitute $y = 7$ into equation of l and find $x =$	MI	
	$\frac{81}{7}$ or $11\frac{4}{7}$ (or exact equiv.)	A1	(2)
	· · · · · · · · · · · · · · · · · · ·		9
	(a) Special case: If B0 B0 from main scheme, allow M1 for a correct method, e.g. $8 = \frac{1+I}{2}$ (b) Finding eqn. of <i>ADC</i> instead of <i>l</i> scores M1 A0 A0.	<u>p</u> .	

Question 2: Jan 05 Q10

Question number			Scheme	Marks	
	(a)	$x^2 - 6x + 18 = (x - 6x + 18)$	$(-3)^2$, +9	B1, MI A1	(3)
	(b)	19	"U"-shaped parabola	M1	
			Vertex in correct quadrant	Alft	
		~ .	P: (0, 18) (or 18 on y-axis)	B1 .	
		+	Q: (3, 9)	Blft	(4)
	(c)	$x^2 - 6x + 18 = 41$	or $(x-3)^2 + 9 = 41$	M1	
		Attempt to solve 3	term quadratic $x = \dots$	M1	
.,		$x = \frac{6 \pm \sqrt{36 - (4 \times 4)}}{2}$	(or equiv.)	A1	
		$\sqrt{128} = \sqrt{64} \times \sqrt{2}$	(or equiv. surd manipulation)	M1	
		$3 + 4\sqrt{2}$	(Ignore other value)	A1	(5)
					12.
		If requires $(x \pm a)^2 \pm a$ nswer only: full mark	$a b \pm 18, \ a \neq 0, \ b \neq 0$ ks.		

Question 3: June 05 Q8

Question Number	Scheme	Marks
(a)	$y - (-4) = \frac{1}{3}(x - 9)$ $3y - x + 21 = 0 \text{(o.e.) (condone 3 terms with integer coefficients e.g. } 3y + 21 = x)$	M1 A1 A1 (3)
(b)	Equation of l_2 is: $y = -2x$ (o.e.) Solving l_1 and l_2 : $-6x - x + 21 = 0$ p is point where $x_p = 3$, $y_p = -6$ x_p or y_p y_p or x_p	B1 M1 A1 A1f.t. (4)
(c)	(l_1 is $y = \frac{1}{3}x - 7$) C is $(0, -7)$ or OC = 7 Area of $\triangle OCP = \frac{1}{2}OC \times x_p$, $= \frac{1}{2} \times 7 \times 3 = 10.5$ or $\frac{21}{2}$	B1f.t. M1 A1c.a.o. (3) (10)
(a)	M1 for full method to find equation of l_1 1stA1 any unsimplified form	
(b)	M1 Attempt to solve two linear equations leading to linear equation in one variable 2^{nd} A1 f.t. only f.t. their x_p or y_p in $y = -2x$	
(c)	B1f.t. Either a correct OC or f.t. from their l_1 M1 for correct attempt in letters or symbols for $\triangle OCP$ A1 c.a.o. $-\frac{1}{2} \times 7 \times 3 \text{ scores M1 A0}$	

Question 4: Jan 06 Q3

Question number		Scheme	Marks
	(a) $y = 5 - (2 \times 3) = -1$	(or equivalent verification) (*)	B1
			(1)
	(b) Gradient of L is $\frac{1}{2}$		B1
	$y - (-1) = \frac{1}{2}(x - 3)$	(ft from a <u>changed</u> gradient)	M1 A1ft
	x-2y-5=0	(or equiv. with integer coefficients)	A1
			(4)
			Total 5 marks
	(a) $y - (-1) = -2(x - 3) \Rightarrow y = -2(x - 3)$	= 5 - 2x is fine for B1.	
	Just a table of values include	ding $x = 3$, $y = -1$ is insufficient.	
	(b) M1: eqn of a line through ($3, -1$), with any numerical gradient (except 0 or ∞).	
	For the M1 A1ft, the equat	ion may be in any form, e.g. $\frac{y-(-1)}{x-3} = \frac{1}{2}$.	
	gradient and substituting (3	be scored by using $y = mx + c$ with a numerical $(3, -1)$ to find the value of c , with A1ft if the value of c tly from a <u>changed</u> gradient.	
	Allow $x - 2y = 5$ or equiv	., but must be integer coefficients.	
	The "= 0" can be implied i	f correct working precedes.	

Question 5: June 06 Q11

Question number	Scheme	Marks
(a)	$m = \frac{8-2}{11+1} (=\frac{1}{2})$	M1 A1
	$y-2=\frac{1}{2}(x-1)$ or $y-8=\frac{1}{2}(x-11)$ o.e.	М1
	$y = \frac{1}{2}x + \frac{5}{2}$ accept exact equivalents e.g. $\frac{6}{12}$	A1c.a.o. (4
(b)	Gradient of $l_2 = -2$	M1
	Equation of l_2 : $y - 0 = -2(x - 10)$ [$y = -2x + 20$]	M1
	$\frac{1}{2}x + \frac{5}{2} = -2x + 20$	M1
	x = 7 and $y = 6$ depend on all 3 Ms	A1, A1 (5)
(c)	$RS^2 = (10-7)^2 + (0-6)^2 (= 3^2 + 6^2)$	M1
	$RS = \sqrt{45} = 3\sqrt{5}$ (*)	A1c.s.o. (2)
(d)	$PQ = \sqrt{12^2 + 6^2}$, = $6\sqrt{5}$ or $\sqrt{180}$ or $PS = 4\sqrt{5}$ and $SQ = 2\sqrt{5}$	M1,A1
	Area = $\frac{1}{2}PQ \times RS = \frac{1}{2}6\sqrt{5} \times 3\sqrt{5}$	dM1
	<u>= 45</u>	A1 c.a.o. (4)
		15
(a)	1 st M1 for attempting $\frac{y_1 - y_2}{x_1 - x_2}$, must be y over x. No formula condone one	sign slip, but if
	formula is quoted then there must be some correct substitution. $1^{\text{st}} A1$ for a fully correct expression, needn't be simplified. $2^{\text{nd}} M1$ for attempting to find equation of l_1 .	
(b)	1^{st} M1 for using the perpendicular gradient rule 2^{nd} M1 for attempting to find equation of l_2 . Follow their gradient provided 3^{rd} M1 for forming a suitable equation to find S .	d different.
(c)	M1 for expression for RS or RS^2 . Ft their S coordinates	
(d)	1 st M1 for expression for PQ or PQ^2 . $PQ^2 = 12^2 + 6^2$ is M1 but $PQ = 12^2 - 12^2$	+6² is M0
	Allow one numerical slip. 2 nd dM1 for a full, correct attempt at area of triangle. Dependent on previou	s M1.

Question 6: June 07 Q10

Question number	Scheme		Marks
	(a) $x = 1$: $y = -5 + 4 = -1$, $x = 2$: $y = -16 + 2 = -14$	(can be given in (b) or (c))	1 st B1 for - 1 2 nd B1 for - 14
	$PQ = \sqrt{(2-1)^2 + (-14 - (-1))^2} = \sqrt{170}$	(*)	M1 A1cso (4)

.

Question 7: June 07 Q11

Question number	Scheme	Marks	9
	(a) $y = -\frac{3}{2}x(+4)$ Gradient = $-\frac{3}{2}$	M1 A1	(2)
	(b) $3x + 2 = -\frac{3}{2}x + 4$ $x =, \frac{4}{9}$	M1, A1	
	$y = 3\left(\frac{4}{9}\right) + 2 = \frac{10}{3} \left(= 3\frac{1}{3}\right)$	A1	(3)
	(c) Where $y = 1$, $l_1: x_A = -\frac{1}{3}$ $l_2: x_B = 2$ M: Attempt one of these	M1 A1	
	Area = $\frac{1}{2}(x_B - x_A)(y_P - 1)$	M1	
	$= \frac{1}{2} \times \frac{7}{3} \times \frac{7}{3} = \frac{49}{18} = 2\frac{13}{18}$ o.e.	A1	(4)
	69		9
	or a full method that leads to $m = 0$, e.g. find 2 points, and attempt gradient upon e.g. finding $y = -1.5x + 4$ alone can score M1 (even if they go on to say $m = 0$). A1 for $m = -\frac{3}{2}$ (can ignore the $+c$) or $\frac{dy}{dx} = -\frac{3}{2}$	2 1	
(b)	M1 for forming a suitable equation in one variable and attempting to solve lead $x =$ or $y =$	ling to	
(c)	1^{st} A1 for any exact correct value for x 2^{nd} A1 for any exact correct value for y (These 3 marks can be scored anywhere, they may treat (a) and (b) as a sin	gle part)	
08003	1 st M1 for attempting the x coordinate of A or B. One correct value seen scores M 1 st A1 for $x_A = -\frac{1}{3}$ and $x_B = 2$	1.	
	2^{nd} M1 for a full method for the area of the triangle – follow through their x_A, x_B, y_B e.g. determinant approach $\frac{1}{2}\begin{vmatrix} 2 & -\frac{1}{3} & \frac{4}{9} & 2\\ 1 & 1 & \frac{10}{3} & 1 \end{vmatrix} = \frac{1}{2}\begin{vmatrix} 2 - \dots - (-\frac{1}{3}\dots) \end{vmatrix}$	Vp.	
	2^{nd} A1 for $\frac{49}{18}$ or an exact equivalent.		
	All accuracy marks require answers as single fractions or mixed numbers not necesterms.	essarily in lo	wes

Question 8: Jan 08 Q4

Question number	Scheme	Marks	
(3)	(a) $m = \frac{4 - (-3)}{-6 - 8}$ or $\frac{-3 - 4}{8 - (-6)}$, $= \frac{7}{-14}$ or $\frac{-7}{14}$ $\left(= -\frac{1}{2} \right)$	M1, A1	
	Equation: $y-4=-\frac{1}{2}(x-(-6))$ or $y-(-3)=-\frac{1}{2}(x-8)$	M1	
	x + 2y - 2 = 0 (or equiv. with <u>integer</u> coefficients must have '= 0')	A1	(4)
	(e.g. $14y + 7x - 14 = 0$ and $14 - 7x - 14y = 0$ are acceptable)		
	(b) $(-6-8)^2 + (4-(-3))^2$	M1	
	$14^2 + 7^2$ or $(-14)^2 + 7^2$ or $14^2 + (-7)^2$ (M1 A1 may be implied by 245)	A1	
	$AB = \sqrt{14^2 + 7^2}$ or $\sqrt{7^2(2^2 + 1^2)}$ or $\sqrt{245}$		
	$7\sqrt{5}$	A1cso	(3)
			7
22	(a) 1 st M: Attempt to use $m = \frac{y_2 - y_1}{x_2 - x_1}$ (may be implicit in an equation of L).		
	2^{nd} M: Attempting straight line equation in any form, e.g. $y - y_1 = m(x - x_1)$,		
	$\frac{y-y_1}{x-x_1} = m$, with any value of m (except 0 or ∞) and either (-6, 4) or (8, -3)		
	N.B. It is also possible to use a different point which lies on the line, such as the midpoint of AB (1, 0.5).		
	Alternatively, the 2^{nd} M may be scored by using $y = mx + c$ with a numerical		
	gradient and substituting $(-6, 4)$ or $(8, -3)$ to find the value of c .		
	Having coords the <u>wrong way round</u> , e.g. $y - (-6) = -\frac{1}{2}(x - 4)$, loses the		
	2^{nd} M mark <u>unless</u> a correct general formula is seen, e.g. $y - y_1 = m(x - x_1)$.		
	(b) M: Attempting to use $(x_2 - x_1)^2 + (y_2 - y_1)^2$.		
	Missing bracket, e.g. $-14^2 + 7^2$ implies M1 if no earlier version is seen.		
	$-14^2 + 7^2$ with no further work would be M1 A0.		
	$-14^2 + 7^2$ followed by 'recovery' can score full marks.		

Question 9: June 08 Q10

Question Number	Scheme	Marks
(a)	$QR = \sqrt{(7-1)^2 + (0-3)^2}$ $= \sqrt{36+9} \text{ or } \sqrt{45}$	M1
	$=\sqrt{36+9}$ or $\sqrt{45}$	A1
	$=3\sqrt{5}$ or $a=3$	A1 (3)
(b)	Gradient of QR (or l_1) = $\frac{3-0}{1-7}$ or $\frac{3}{-6}$, = $-\frac{1}{2}$	M1 A1
	Gradient of l_2 is $-\frac{1}{-\frac{1}{2}}$ or 2	M1
	Equation for l_2 is: $y-3=2(x-1)$ or $\frac{y-3}{x-1}=2$ [or $y=2x+1$]	M1 A1 ft (5)
(c)	P is $(0, 1)$ (allow " $x = 0, y = 1$ " but it must be clearly identifiable as P)	B1 (1)
(d)	$PQ = \sqrt{(1 - x_p)^2 + (3 - y_p)^2}$ $PQ = \sqrt{1^2 + 2^2} = \sqrt{5}$	M1
	$PQ = \sqrt{1^2 + 2^2} = \sqrt{5}$	A1
	Area of triangle is $\frac{1}{2}QR \times PQ = \frac{1}{2}3\sqrt{5} \times \sqrt{5}, = \frac{15}{2}$ or 7.5	M1 A1 (4)
		(13 marks)

Question 10: Jan 09 Q10

Scheme	Marks
$y-5=-\frac{1}{2}(x-2)$ or equivalent, e.g. $\frac{y-5}{x-2}=-\frac{1}{2}$, $y=-\frac{1}{2}x+6$	M1A1, A1cao (3)
$x = -2 \Rightarrow y = -\frac{1}{2}(-2) + 6 = 7$ (therefore B lies on the line)	B1 (1)
(or equivalent verification methods) $(AB^2 =) (2-2)^2 + (7-5)^2$, $= 16+4=20$, $AB = \sqrt{20} = 2\sqrt{5}$	M1, A1, A1
C is $(p, -\frac{1}{2}p+6)$, so $AC^2 = (p-2)^2 + \left(-\frac{1}{2}p+6-5\right)^2$ Therefore $25 = p^2 - 4p + 4 + \frac{1}{4}p^2 - p + 1$	M1 M1
$25 = 1.25p^2 - 5p + 5$ or $100 = 5p^2 - 20p + 20$ (or better, RHS simplified to 3 terms) Leading to: $0 = p^2 - 4p - 16$ (*)	A1 A1cso (4)
 M1 A1 The version in the scheme above can be written down directly (for 2 marks), and M1 A0 can be allowed if there is just one slip (sign or number). If the 5 and 2 are the wrong way round the M mark can still be given if a correct formula (e.g. y - y₁ = m(x - x₁)) is seen, otherwise M0. If (2, 5) is substituted into y = mx + c to find c, the M mark is for attempting this and the 1st A mark is for c = 6. Correct answer without working or from a sketch scores full marks. A conclusion/comment is not required, except when the method used is to establish that the line through (-2,7) with gradient -½ has the same eqn. as found in part (a), or to establish that the line through (-2,7) and (2,5) has gradient -½. In these cases a comment 'same equation' or 'same gradient' or 'therefore on same line' is sufficient. M1 for attempting AB² or AB. Allow one slip (sign or number) inside a bracket, i.e. do not allow (2-2)² - (7-5)². 	
 1st A1 for 20 (condone bracketing slips such as -2² = 4) 2nd A1 for 2√5 or k = 2 (Ignore ± here). 1st M1 for (p-2)² + (linear function of p)². The linear function may be unsimplified but must be equivalent to ap + b, a ≠ 0, b ≠ 0. 2nd M1 (dependent on 1st M) for forming an equation in p (using 25 or 5) and attempting (perhaps not very well) to multiply out both brackets. 1st A1 for collecting like p terms and having a correct expression. 2nd A1 for correct work leading to printed answer. Alternative, using the result: Solve the quadratic (p = 2 ± 2√5) and use one or both of the two solutions to find the length of AC² or C₁C₂²: e.g. AC² = (2 + 2√5 - 2)² + (5 - √5 - 5)² scores 1st M1, and 1st A1 if fully correct. Finding the length of AC or AC² for both values of p, or finding C₁C₂ with some evidence of halving (or intending to halve) scores the 2nd M1. 	
	$y-5=-\frac{1}{2}(x-2)$ or equivalent, e.g. $\frac{y-5}{x-2}=-\frac{1}{2}$, $y=-\frac{1}{2}x+6$ $x=-2\Rightarrow y=-\frac{1}{2}(-2)+6=7$ (therefore B lies on the line) (or equivalent verification methods) $(AB^2=)(2-2)^2+(7-5)^2$, $=16+4=20$, $AB=\sqrt{20}=2\sqrt{5}$ C is $(p,-\frac{1}{2}p+6)$, so $AC^2=(p-2)^2+\left(-\frac{1}{2}p+6-5\right)^2$ Therefore $25=p^2-4p+4+\frac{1}{4}p^2-p+1$ $25=1.25p^2-5p+5$ or $100=5p^2-20p+20$ (or better, RHS simplified to 3 terms) Leading to: $0=p^2-4p-16$ (*) M1 A1 The version in the scheme above can be written down directly (for 2 marks), and M1 A0 can be allowed if there is just one slip (sign or number). If the 5 and 2 are the wrong way round the M mark can still be given if a correct formula $(e,g,y-y_1=m(x-x_1))$ is seen, otherwise M0. If $(2,5)$ is substituted into $y=mx+c$ to find c , the M mark is for attempting this and the 1^{th} A mark is for $c=6$. Correct answer without working or from a sketch scores full marks. A conclusion/comment is not required, except when the method used is to establish that the line through $(-2,7)$ with gradient $-\frac{1}{2}$ has the same eqn. as found in part (a) , or to establish that the line through $(-2,7)$ and $(2,5)$ has gradient $-\frac{1}{2}$. In these cases a comment 'same equation' or 'same gradient' or 'therefore on same line' is sufficient. M1 for attempting AB^2 or AB . Allow one slip (sign or number) inside a bracket, i.e. do not allow $(22)^2-(7-5)^2$. 1st A1 for 20 (condone bracketing slips such as $-2^2=4$) 2nd A1 for $2\sqrt{5}$ or $k=2$ (Ignore \pm here). 2nd A1 for $2\sqrt{5}$ or $k=2$ (Ignore \pm here). 2nd A1 for $2\sqrt{5}$ or $k=2$ (Ignore \pm here). 2nd A1 for correct work leading to printed answer. Alternative, using the result: Solve the quadratic $(p=2\pm2\sqrt{5})$ and use one or both of the two solutions to find the length of AC^2 or C_1C_2 : e.g. $AC^2=(2+2\sqrt{5}-2)^2+(5-\sqrt{5}-5)^2$ scores 1^{th} M1, and 1^{th} A1 fully correct.

Question 11: June 09 Q8

Question Number	Scheme	Marks
Q (a)	$AB: m = \frac{2-7}{8-6}, \left(=-\frac{5}{2}\right)$	B1
	Using $m_1 m_2 = -1$: $m_2 = \frac{2}{5}$	м1
	$y-7=\frac{2}{5}(x-6)$, $2x-5y+23=0$ (o.e. with integer coefficients)	M1, A1 (4)
(b)	Using $x = 0$ in the answer to (a), $y = \frac{23}{5}$ or 4.6	M1, A1ft (2)
(c)	Area of triangle = $\frac{1}{2} \times 8 \times \frac{23}{5} = \frac{92}{5}$ (o.e) e.g. $\left(18\frac{2}{5}, 18.4, \frac{184}{10}\right)$	M1 A1 (2)
(a) (b)	B1 for an expression for the gradient of AB. Does not need the = -2.5 1st M1 for use of the perpendicular gradient rule. Follow through their m 2nd M1 for the use of (6, 7) and their changed gradient to form an equation for l. Can be awarded for \(\frac{y-7}{x-6} = \frac{2}{5}\) o.e. Alternative is to use (6, 7) in \(y = mx + c\) to \(\frac{\text{find a value}}{\text{a value}}\) for \(c\). Score when \(c = \ldots\) is reached. A1 for a correct equation in the required form and must have "= 0" and integer coefficients M1 for using \(x = 0\) in their answer to part (a) e.g. \(-5y + 23 = 0\) A1ft for \(y = \frac{23}{5}\) provided that \(x = 0\) clearly seen \(\frac{\text{or}}{\text{C}}\) (0, 4.6). Follow through their equation in (a) If \(x = 0\), \(y = 4.6\) are clearly seen but \(C\) is given as (4.6,0) apply ISW and award the mark. This A mark requires a simplified fraction or an exact decimal Accept their 4.6 marked on diagram next to \(C\) for M1A1ft M1 for \(\frac{1}{2} \times 8 \times y_C\) so can follow through their \(y\) coordinate of \(C\). A1 for 18.4 (o.e.) but their \(y\) coordinate of \(C\) must be positive	
	Use of 2 triangles or trapezium and triangle Award M1 when an expression for area of OCB only is seen	
	Determinant approach	
	Award M1 when an expression containing $\frac{1}{2} \times 8 \times y_C$ is seen	

Question 12: Jan 10 Q3

Question number	Scheme	Marks
namber	 (a) Putting the equation in the form y = mx (+c) and attempting to extract the m or mx (not the c), or finding 2 points on the line and using the correct gradient formula. Gradient = -3/5 (or equivalent) 	M1
	(b) Gradient of perp. line = $\frac{-1}{"(-\frac{3}{5})"}$ (Using $-\frac{1}{m}$ with the <i>m</i> from part (a))	M1 (2
	$y-1="\left(\frac{5}{3}\right)"(x-3)$	M1
	$y = \frac{5}{3}x - 4$ (Must be in this form allow $y = \frac{5}{3}x - \frac{12}{3}$ but not $y = \frac{5x - 12}{3}$) This A mark is dependent upon both M marks.	A1 (3
	(a) Condone sign errors and ignore the c for the M mark, so both marks can be scored even if c is wrong (e.g. $c = -\frac{2}{5}$) or omitted.	
	Answer only: $-\frac{3}{5}$ scores M1 A1. Any other answer only scores M0 A0. $y = -\frac{3}{5}x + \frac{2}{5}$ with no further progress scores M0 A0 (<i>m</i> or <i>mx</i> not extracted).	
	 (b) 2nd M: For the equation, in any form, of a straight line through (3, 1) with any numerical gradient (except 0 or ∞). (Alternative is to use (3, 1) in y = mx + c to find a value for c, in which 	
	case $y = \frac{3}{3}x + c$ leading to $c = -4$ is sufficient for the A1). (See general principles for straight line equations at the end of the scheme).	

Question 13: Jan 10 Q9

Question number	Scheme	Marks
number	 (a) x(x²-4) Factor x seen in a correct factorised form of the expression. = x(x-2)(x+2) M: Attempt to factorise quadratic (general principles). Accept (x-0) or (x+0) instead of x at any stage. Factorisation must be seen in part (a) to score marks. 	B1 M1 A1
	Shape (2 turning points required) Through (or touching) origin Crossing x-axis or "stopping at x-axis" (not a turning point) at (-2, 0) and (2, 0). Allow -2 and 2 on x-axis. Also allow (0, -2) and (0, 2) if marked on x-axis. Ignore extra intersections with x-axis.	B1 B1 B1
	(c) <u>Either</u> $y = 3$ (at $x = -1$) or $y = 15$ (at $x = 3$) Allow if seen elsewhere. Gradient = $\frac{"15 - 3"}{3 - (-1)}$ (= 3) Attempt correct grad. formula with their y values. For gradient M mark, if correct formula not seen, allow one slip, e.g. $\frac{"15 - 3"}{3 - 1}$	M1
	$y - "15" = m(x - 3) \text{ or } y - "3" = m(x - (-1)), \text{ with any value for } m.$ $y - 15 = 3(x - 3) \text{ or the correct equation in any form,}$ $e.g. \ y - 3 = \frac{15 - 3}{3 - (-1)}(x - (-1)), \ \frac{y - 3}{x + 1} = \frac{15 - 3}{3 + 1}$ $y = 3x + 6$	M1 A1 (5
	(d) $AB = \sqrt{("15-3")^2 + (3-(-1))^2}$ (With their <u>non-zero</u> y values) Square root is required. $= \sqrt{160} \left(= \sqrt{16}\sqrt{10} \right) = 4\sqrt{10}$ (Ignore ± if seen) ($\sqrt{16}\sqrt{10}$ need not be seen).	M1 (2)
	 (a) x³-4x → x(x²-4) → (x-2)(x+2) scores B1 M1 A0. x³-4x → x²-4 → (x-2)(x+2) scores B0 M1 A0 (dividing by x). x³-4x → x(x²-4x) → x²(x-4) scores B0 M1 A0. x³-4x → x(x²-4) → x(x-2)² scores B1 M1 A0. Special cases: x³-4x → (x-2)(x²+2x) scores B0 M1 A0. x³-4x → x(x-2)² (with no intermediate step seen) scores B0 M1 A0. x³-4x → x(x-2)² (with no intermediate step seen) scores B0 M1 A0. (b) The 2nd and 3rd B marks are not dependent upon the 1rd B mark, but are dependent upon a sketch having been attempted. (c) 1rd M: May be implicit in the equation of the line, e.g. y-"15"/3-"15" = x-"3"/-1-"3" 2nd M: An equation of a line through (3, "15") or (-1, "3") in any form. with any gradient (except 0 or ∞). 2nd M: Alternative is to use one of the points in y = mx + c to find a value for c, in which case y = 3x + c leading to c = 6 is sufficient for both A marks. 1rd A1: Correct equation in any form. 	

Question 14: June 10 Q8

Question Number	Scheme	Mar	rks	
(a)	$m_{AB} = \frac{4-0}{7-2} \left(= \frac{4}{5} \right)$	м1		
	Equation of AB is: $y-0 = \frac{4}{5}(x-2)$ or $y-4 = \frac{4}{5}(x-7)$ (o.e.)	M1		
	4x - 5y - 8 = 0 (o.e.)	A1	(3)	
(b)	$(AB =)\sqrt{(7-2)^2 + (4-0)^2}$	M1		
	$=\sqrt{41}$	A1	(2)	
(c)	Using isos triangle with $AB = AC$ then $t = 2 \times y_A = 2 \times 4 = 8$	B1	(1)	
(d)	Area of triangle = $\frac{1}{2}t \times (7-2)$	M1		
	= <u>20</u>	A1	(2)	
	Notes		8	
	2^{nd} M1 for an attempt at equation of <i>AB</i> . Follow through their gradient, not e.g. – Using $y = mx + c$ scores this mark when c is found. Use of $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ scores 1^{st} M1 for denominator, 2^{nd} M1 for use of a correct an equires integer form but allow $5y + 8 = 4x$ etc. Must have an "=" or A0	m		
(b)	M1 for an expression for AB or AB^2 . Ignore what is "left" of the equals sign			
(c)	B1 for $t = 8$. May be implied by correct coordinates $(2, 8)$ or the value appearing in (d)			
(d)	M1 for an expression for the area of the triangle, follow through their $t \neq 0$ be have the $(7-2)$ or 5 and the $\frac{1}{2}$.	ut must		
DET	e.g. $\begin{pmatrix} 2 & 7 & 2 & 2 \\ 0 & 4 & t & 0 \end{pmatrix}$ Area $= \frac{1}{2} \left[8 + 7t + 0 - \left(0 + 8 + 2t \right) \right]$ Must have the $\frac{1}{2}$ for M1			

Question 15: Jan 11 Q9

Question Number	Scheme	Marks	
(a)	(8-3-k=0) so $k=5$	B1	(1
(b)	2y = 3x + k	M1	
	$2y = 3x + k$ $y = \frac{3}{2}x + \dots \text{ and so } m = \frac{3}{2} \text{ o.e.}$	A1	(2
(c)	Perpendicular gradient = $-\frac{2}{3}$	B1ft	12
	Equation of line is: $y-4=-\frac{2}{3}(x-1)$	M1A1ft	
	3y + 2x - 14 = 0 o.e.	A1	(4
(d)	$y = 0$, $\Rightarrow B(7,0)$ or $x = 7$ or $-\frac{c}{a}$	M1A1ft	
		8	(2
(e)	$AB^2 = (7-1)^2 + (4-0)^2$ $AB = \sqrt{52}$ or $2\sqrt{13}$	M1	
	$AB = \sqrt{52}$ or $2\sqrt{13}$	A1	(2
	<u>Notes</u>	5	
(b)	M1 for an attempt to rearrange to $y =$ A1 for clear statement that gradient is 1.5, can be $m = 1.5$ o.e.		
(c)	B1ft for using the perpendicular gradient rule correctly on their "1.5"		
	M1 for an attempt at finding the equation of the line through A using their gradient. Allow a sign slip 1^{st} A1ft for a correct equation of the line follow through their changed		
	gradient 2^{nd} A1 as printed or equivalent with integer coefficients – allow $3y + 2x = 14$ or $3y = 14 - 2x$		
(d)	M1 for use of $y = 0$ to find $x =$ in their equation A1ft for $x = 7$ or $-\frac{c}{}$	2	
	а	Y.	
(e)	M1 for an attempt to find AB or AB ² A1 for any correct surd form- need not be simplified		

Question 16: June 11 Q3

Question Number	Scheme	Marks		
	Mid-point of PQ is (4, 3)	B1		
	PQ: $m = \frac{0-6}{9-(-1)}, \left(=-\frac{3}{5}\right)$	B1		
	Gradient perpendicular to $PQ = -\frac{1}{m} \ (=\frac{5}{3})$	M1		
	$y-3=\frac{5}{3}(x-4)$	M1		
	5x-3y-11=0 or $3y-5x+11=0$ or multiples e.g. $10x-6y-22=0$	A1 (5		
	<u>Notes</u>			
	B1: correct midpoint.			
	B1: correct numerical expression for gradient – need not be simplified 1 st M: Negative reciprocal of their numerical value for m 2 nd M: Equation of a line through their (4, 3) with any gradient except 0 or ∞.			
	If the 4 and 3 are the wrong way round the 2^{nd} M mark can still be given formula (e.g. $y - y_1 = m(x - x_1)$) is seen, otherwise M0.			
	If $(4, 3)$ is substituted into $y = mx + c$ to find c, the 2^{nd} M mark is for at			
	A1: Requires integer form with an = zero (see examples above)			