Trigonometric Equations and Identities - Edexcel Past Exam Questions

1. (a) Show that the equation

$$
5 \cos ^{2} x=3(1+\sin x)
$$

can be written as

$$
\begin{equation*}
5 \sin ^{2} x+3 \sin x-2=0 \tag{2}
\end{equation*}
$$

(b) Hence solve, for $0 \leq x<360^{\circ}$, the equation

$$
\begin{equation*}
5 \cos ^{2} x=3(1+\sin x) \tag{5}
\end{equation*}
$$

giving your answers to 1 decimal place where appropriate.
Jan 05 Q4
2. Solve, for $0 \leq x \leq 180^{\circ}$, the equation
(a) $\sin \left(x+10^{\circ}\right)=\frac{\sqrt{ } 3}{2}$,
(b) $\cos 2 x=-0.9$, giving your answers to 1 decimal place.

June 05 Q5
3. (a) Find all the values of θ, to 1 decimal place, in the interval $0^{\circ} \leq \theta<360^{\circ}$ for which

$$
\begin{equation*}
5 \sin \left(\theta+30^{\circ}\right)=3 \tag{4}
\end{equation*}
$$

(b) Find all the values of θ, to 1 decimal place, in the interval $0^{\circ} \leq \theta<360^{\circ}$ for which

$$
\begin{equation*}
\tan ^{2} \theta=4 \tag{5}
\end{equation*}
$$

Jan 06 Q8
4. (a) Given that $\sin \theta=5 \cos \theta$, find the value of $\tan \theta$.
(b) Hence, or otherwise, find the values of θ in the interval $0 \leq \theta<360^{\circ}$ for which

$$
\begin{equation*}
\sin \theta=5 \cos \theta \tag{3}
\end{equation*}
$$

giving your answers to 1 decimal place.
June 06 Q6
5. (a) Show that the equation

$$
3 \sin ^{2} \theta-2 \cos ^{2} \theta=1
$$

can be written as

$$
\begin{equation*}
5 \sin ^{2} \theta=3 \tag{2}
\end{equation*}
$$

(b) Hence solve, for $0^{\circ} \leq \theta<360^{\circ}$, the equation

$$
\begin{equation*}
3 \sin ^{2} \theta-2 \cos ^{2} \theta=1, \tag{7}
\end{equation*}
$$

giving your answer to 1 decimal place.
6. Solve, for $0 \leq x<360^{\circ}$,
(a) $\sin \left(x-20^{\circ}\right)=\frac{1}{\sqrt{2}}$,
(b) $\cos 3 x=-\frac{1}{2}$.
7. (a) Show that the equation

$$
4 \sin ^{2} x+9 \cos x-6=0
$$

can be written as

$$
\begin{equation*}
4 \cos ^{2} x-9 \cos x+2=0 \tag{2}
\end{equation*}
$$

(b) Hence solve, for $0 \leq x<720^{\circ}$,

$$
\begin{equation*}
4 \sin ^{2} x+9 \cos x-6=0, \tag{6}
\end{equation*}
$$

giving your answers to 1 decimal place.
8. (i) Solve, for $-180^{\circ} \leq \theta<180^{\circ}$,

$$
\begin{equation*}
(1+\tan \theta)(5 \sin \theta-2)=0 \tag{4}
\end{equation*}
$$

(ii) Solve, for $0 \leq x<360^{\circ}$,

$$
\begin{equation*}
4 \sin x=3 \tan x \tag{6}
\end{equation*}
$$

June 09 Q7
9. (a) Show that the equation

$$
5 \sin x=1+2 \cos ^{2} x
$$

can be written in the form

$$
\begin{equation*}
2 \sin ^{2} x+5 \sin x-3=0 \tag{2}
\end{equation*}
$$

(b) Solve, for $0 \leq x<360^{\circ}$,

$$
\begin{equation*}
2 \sin ^{2} x+5 \sin x-3=0 \tag{4}
\end{equation*}
$$

Jan 10 Q2
10. (a) Given that $5 \sin \theta=2 \cos \theta$, find the value of $\tan \theta$.
(1)
(b) Solve, for $0 \leq x<360^{\circ}$,

$$
5 \sin 2 x=2 \cos 2 x,
$$

giving your answers to 1 decimal place.
11. (a) Show that the equation

$$
3 \sin ^{2} x+7 \sin x=\cos ^{2} x-4
$$

can be written in the form

$$
\begin{equation*}
4 \sin ^{2} x+7 \sin x+3=0 \tag{2}
\end{equation*}
$$

(b) Hence solve, for $0 \leq x<360^{\circ}$,

$$
3 \sin ^{2} x+7 \sin x=\cos ^{2} x-4
$$

giving your answers to 1 decimal place where appropriate.
(5)

Jan 11 Q7
12. Solve for $0 \leq x<360^{\circ}$, giving your answers in degrees to 1 decimal place,

$$
3 \sin \left(x+45^{\circ}\right)=2 .
$$

