

Trigonometric Equations and Identities - Edexcel Past Exam Questions

1. (*a*) Show that the equation

$$5\cos^2 x = 3(1+\sin x)$$

can be written as

$$5\sin^2 x + 3\sin x - 2 = 0.$$

(*b*) Hence solve, for $0 \le x < 360^\circ$, the equation

$$5\cos^2 x = 3(1+\sin x),$$

giving your answers to 1 decimal place where appropriate. (5)

Jan 05 Q4

(2)

2. Solve, for $0 \le x \le 180^\circ$, the equation

(a)
$$\sin(x+10^\circ) = \frac{\sqrt{3}}{2}$$
, (4)

(b) $\cos 2x = -0.9$, giving your answers to 1 decimal place. (4)

```
June 05 Q5
```

3. (a) Find all the values of θ , to 1 decimal place, in the interval $0^\circ \le \theta < 360^\circ$ for which

$$5\sin\left(\theta + 30^\circ\right) = 3.$$

(4)

(b) Find all the values of θ , to 1 decimal place, in the interval $0^{\circ} \le \theta \le 360^{\circ}$ for which

$$\tan^2 \theta = 4.$$

(5)

Jan 06 Q8

4.	(<i>a</i>)	Given that $\sin \theta = 5 \cos \theta$, find the value of $\tan \theta$.	(1)		
	(<i>b</i>)	Hence, or otherwise, find the values of θ in the interval $0 \le \theta < 360^\circ$ for which			
		$\sin \theta = 5 \cos \theta,$			
		giving your answers to 1 decimal place.	(3)		
			June 06 Q6		
5.	(<i>a</i>)	Show that the equation			
		$3\sin^2\theta - 2\cos^2\theta = 1$ can be written as			
		$5\sin^2\theta=3.$	(2)		
	(<i>b</i>)	Hence solve, for $0^{\circ} \le \theta < 360^{\circ}$, the equation			
		$3\sin^2\theta-2\cos^2\theta=1,$			
		giving your answer to 1 decimal place.	(7) Jan 08 Q4		
6.	Sol	ve, for $0 \le x < 360^{\circ}$,			
	(<i>a</i>)	$\sin(x-20^\circ)=\frac{1}{\sqrt{2}},$	(4)		
	(<i>b</i>)	$\cos 3x = -\frac{1}{2}.$	(6)		
		-	June 08 O9		

7. (*a*) Show that the equation

 $4\sin^2 x + 9\cos x - 6 = 0$

can be written as

 $4\cos^2 x - 9\cos x + 2 = 0.$ (2)

(*b*) Hence solve, for $0 \le x < 720^\circ$,

 $4\sin^2 x + 9\cos x - 6 = 0,$

giving your answers to 1 decimal place.

(6)

8.	(i) Solve, for $-180^\circ \le \theta < 180^\circ$,		
		$(1 + \tan \theta)(5 \sin \theta - 2) = 0.$	(4)
	(ii) Solve, for $0 \le x < 36$	50°,	
		$4\sin x = 3\tan x.$	(6)
			June 09 Q7
9.	(<i>a</i>) Show that the equation	on	
		$5\sin x = 1 + 2\cos^2 x$	
	can be written in the	form	
		$2\sin^2 x + 5\sin x - 3 = 0.$	(2)
	(b) Solve, for $0 \le x < 36$	50°,	
		$2\sin^2 x + 5\sin x - 3 = 0.$	
			(4) Jan 10 Q2
10.	(a) Given that $5 \sin \theta = 2 \cos \theta$, find the value of $\tan \theta$.		(1)
	(b) Solve, for $0 \le x < 360$	٥,	
		$5\sin 2x = 2\cos 2x ,$	
	giving your answers	to 1 decimal place.	(5)
			(3)
			June 10 Q5

11. (*a*) Show that the equation

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

can be written in the form

$$4\sin^2 x + 7\sin x + 3 = 0.$$

(*b*) Hence solve, for $0 \le x < 360^\circ$,

$$3 \sin^2 x + 7 \sin x = \cos^2 x - 4$$

giving your answers to 1 decimal place where appropriate.

(5)

(2)

12. Solve for $0 \le x < 360^\circ$, giving your answers in degrees to 1 decimal place,

$$3\sin(x+45^\circ) = 2.$$
 (4)

June 11 Q7(edited)