

Travel Graphs - Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 05 Q3

Question Number	Scheme		Marks	
	(a)	Distance = $\frac{1}{2}$ x 4 x 9 + 16 x 9 or $\frac{1}{2}$ (20 + 16) x 9	M1	
		= <u>162 m</u>	A1 (2)	
	(b)	Distance over last 5 s = $\frac{1}{2}(9 + u) \times 5$	M1	
		$162 + \frac{1}{2}(9 + u) \times 5 = 200$	M1 A1√	
		$\Rightarrow u = \underline{6.2 \text{ m s}^{-1}}$	A1 (4)	
	(c)	6.2 = 9 + 5a	M1 A1√	
		$a = (-) 0.56 \text{ m s}^{-2}$	A1 (3)	

Question 2: June 05 Q5

(a) 10 ¹	Shape $0 < t < 12$	В1
	Shape $t > 12$	В1
3 12 27	Figures	B1 (3)
(b) Distance in 1 st 12 s = $\frac{1}{2}$ x (10 + 3) x 12 or (3 x 12)	+ ½ x 3 x 7	M1
= <u>78 m</u>		A1
(c) either		(2)
distance from $t = 12$ to $t = 27 = 15$ x $3 = 45$ \therefore distance in last section = $135 - 45 = 12$ m		В1√
$\frac{1}{2} \times 3 \times t = 12,$		M1 A1√
$\Rightarrow t = 8 \text{ s}$		A1
hence total time = $27 + 8 = 35 \text{ s}$		A1 (5)
or Distance remaining after $12 \text{ s} = 135 - 78 = 57 \text{ m}$		(5)
$\frac{1}{2} \times (15 + 15 + t) \times 3 = 57$		B1√
$\Rightarrow t = 8$		M1 A1√
Hence total time = $27 + 8 = 35 \text{ s}$		A1
Hence total time − 27 ± 6 − <u>55 \$</u>		A1

Question 3: June 06 Q1

Question Number	Scheme	Marks
	 (a) Constant acceleration (b) Constant speed/velocity (c) Distance = ½ (2 + 5) x 3, + (4 x 5) = 30.5 m 	B1 (1) B1 (1) M1 A1, B1 A1 (4)
	 (a) and (b) Accept 'steady' instead of 'constant. Allow 'o.e.' (= 'or equivalent') within reason! But must have idea of constant. 'constant speed and constant acceleration' for (a) or (b) is B0 (c) M1 for valid attempt at area of this trap. as area of a trap. Or this trap. as = triangle + rectangle, i.e. correct formula used with at most a slip in numbers. B1 for area of rectangle as 5 x 4 Treating whole as a single const acceln situation, or whole as a single trapezium, is M0. If assume that top speed is 5.1 or 5.2, allow full marks on f.t. basis (but must be consistent) 	

Question 4: June 07 Q4

Question 5: Jan 08 Q3

Question Number	Scheme	
.(a)	Shape 'V' Shape for last 22s (with V > 15) Figures	B1 B1 B1 (3)
(b)	$t = \frac{16}{16} = \frac{22}{2}$ $\frac{1}{2}(15+5) \times t = 120$	M1
	$\Rightarrow t = 12 \rightarrow T = 12 + 16 + 22 = 50 \text{ s}$	M1 A1 (3)
(c)	$120 + \frac{1}{2}(V+5).16 + 22V = 1000$	M1 <u>B1</u> A1
	Solve: $30V = 840 \implies V = \underline{28}$	DM1 A1 (5) 11

Question 6: June 08 Q4

Question 7: Jan 09 Q2

(a)				
. ,	u	<i>u</i>	shape	B1
	-u 4	<u>or</u> -u 4	values	B1 (

Question 8: Jan 10 Q2

THIS WILL SHEET THE SHEET

Question 9: June 10 Q5

Question 10: Jan 11 Q5

Question Number	Scheme	Marks
(a) (i)	1st section correct 2nd & 3rd sections correct Numbers and v marked correctly on the axes.	B1 B1 DB1
(ii)	1 st section correct 2 nd section correct 3 rd section correct and no "extras" on the sketch	B1 B1 B1 (6)
(b)	$\frac{70 + 40}{2} \times v = 880$ $v = 880 \times \frac{2}{110} = 16$	M1 A1 DM1 A1 (4) [10]