Travel Graphs - Edexcel Past Exam Questions MARK SCHEME ## Question 1: Jan 05 Q3 | Question
Number | Scheme | | Marks | | |--------------------|--------|---|-----------|--| | | (a) | Distance = $\frac{1}{2}$ x 4 x 9 + 16 x 9 or $\frac{1}{2}$ (20 + 16) x 9 | M1 | | | | | = <u>162 m</u> | A1
(2) | | | | (b) | Distance over last 5 s = $\frac{1}{2}(9 + u) \times 5$ | M1 | | | | | $162 + \frac{1}{2}(9 + u) \times 5 = 200$ | M1 A1√ | | | | | $\Rightarrow u = \underline{6.2 \text{ m s}^{-1}}$ | A1
(4) | | | | (c) | 6.2 = 9 + 5a | M1 A1√ | | | | | $a = (-) 0.56 \text{ m s}^{-2}$ | A1
(3) | | ## Question 2: June 05 Q5 | (a) 10 ¹ | Shape $0 < t < 12$ | В1 | |---|--------------------|--------| | | Shape $t > 12$ | В1 | | 3 12 27 | Figures | B1 (3) | | (b) Distance in 1 st 12 s = $\frac{1}{2}$ x (10 + 3) x 12 or (3 x 12) | + ½ x 3 x 7 | M1 | | = <u>78 m</u> | | A1 | | (c) either | | (2) | | distance from $t = 12$ to $t = 27 = 15$ x $3 = 45$
\therefore distance in last section = $135 - 45 = 12$ m | | В1√ | | $\frac{1}{2} \times 3 \times t = 12,$ | | M1 A1√ | | $\Rightarrow t = 8 \text{ s}$ | | A1 | | hence total time = $27 + 8 = 35 \text{ s}$ | | A1 (5) | | or Distance remaining after $12 \text{ s} = 135 - 78 = 57 \text{ m}$ | | (5) | | $\frac{1}{2} \times (15 + 15 + t) \times 3 = 57$ | | B1√ | | $\Rightarrow t = 8$ | | M1 A1√ | | Hence total time = $27 + 8 = 35 \text{ s}$ | | A1 | | Hence total time − 27 ± 6 − <u>55 \$</u> | | A1 | #### Question 3: June 06 Q1 | Question
Number | Scheme | Marks | |--------------------|--|---| | | (a) Constant acceleration (b) Constant speed/velocity (c) Distance = ½ (2 + 5) x 3, + (4 x 5) = 30.5 m | B1 (1)
B1 (1)
M1 A1, B1
A1 (4) | | | (a) and (b) Accept 'steady' instead of 'constant. Allow 'o.e.' (= 'or equivalent') within reason! But must have idea of constant. 'constant speed and constant acceleration' for (a) or (b) is B0 (c) M1 for valid attempt at area of this trap. as area of a trap. Or this trap. as = triangle + rectangle, i.e. correct formula used with at most a slip in numbers. B1 for area of rectangle as 5 x 4 Treating whole as a single const acceln situation, or whole as a single trapezium, is M0. If assume that top speed is 5.1 or 5.2, allow full marks on f.t. basis (but must be consistent) | | ## Question 4: June 07 Q4 #### Question 5: Jan 08 Q3 | Question
Number | Scheme | | |--------------------|---|---------------------| | .(a) | Shape 'V' Shape for last 22s (with V > 15) Figures | B1
B1
B1 (3) | | (b) | $t = \frac{16}{16} = \frac{22}{2}$ $\frac{1}{2}(15+5) \times t = 120$ | M1 | | | $\Rightarrow t = 12 \rightarrow T = 12 + 16 + 22 = 50 \text{ s}$ | M1 A1 (3) | | (c) | $120 + \frac{1}{2}(V+5).16 + 22V = 1000$ | M1 <u>B1</u> A1 | | | Solve: $30V = 840 \implies V = \underline{28}$ | DM1 A1
(5)
11 | #### Question 6: June 08 Q4 #### Question 7: Jan 09 Q2 | (a) | | | | | |-----|------|----------------|--------|------| | . , | u | <i>u</i> | shape | B1 | | | -u 4 | <u>or</u> -u 4 | values | B1 (| ## Question 8: Jan 10 Q2 # THIS WILL SHEET THE #### Question 9: June 10 Q5 ## Question 10: Jan 11 Q5 | Question
Number | Scheme | Marks | |--------------------|---|--------------------------| | (a)
(i) | 1st section correct 2nd & 3rd sections correct Numbers and v marked correctly on the axes. | B1
B1
DB1 | | (ii) | 1 st section correct 2 nd section correct 3 rd section correct and no "extras" on the sketch | B1
B1
B1 (6) | | (b) | $\frac{70 + 40}{2} \times v = 880$ $v = 880 \times \frac{2}{110} = 16$ | M1 A1 DM1 A1 (4) [10] |