

Partial Fractions - Edexcel Past Exam Questions MARK SCHEME

Question 1

Question Number	Scheme	Mark	ks
	Considers $3x^2 + 16 = A(2+x)^2 + B(1-3x)(2+x) + C(1-3x)$ and substitutes $x = -2$, or $x = 1/3$, or compares coefficients and solves simultaneous equations	M1	
	To obtain A = 3, and C = 4	A1, A1	(4)

Question Number	Scheme		Marks
	$3x - 1 \equiv A(1 - 2x) + B$ Let $x = \frac{1}{2}$; $\frac{3}{2} - 1 = B \implies B = \frac{1}{2}$	Considers this identity and either substitutes $x = \frac{1}{2}$, equates coefficients or solves simultaneous equations	complete M1
	Equate x terms; $3 = -2A \implies A = -\frac{3}{2}$	$A = -\frac{3}{2}$; $B = \frac{1}{2}$	A1;A1
	(No working seen, but A and B correctly stated ⇒ award all three marks. If one of A or B correctly stated give two out of the three marks available for this part.)		[3]

Question Number	Scheme	Marks
	$\frac{2x-1}{(x-1)(2x-3)} \equiv \frac{A}{(x-1)} + \frac{B}{(2x-3)}$	
	Forming this identity. $2x-1 \equiv A(2x-3)+B(x-1)$ NB: A & B are not assigned in this question Let $x=\frac{3}{2}$, $2=B\left(\frac{1}{2}\right)$ \Rightarrow B = 4	M1
	Let $x = 1$, $1 = A(-1) \Rightarrow A = -1$ either one of $A = -1$ or $B = 4$. both correct for their A, B.	A1 A1
	giving $\frac{-1}{(x-1)} + \frac{4}{(2x-3)}$	[3]

Question Number	Scheme		Marks
4. (a) Way 1	A method of long division gives, $\frac{2(4x^2+1)}{(2x+1)(2x-1)} \equiv 2 + \frac{4}{(2x+1)(2x-1)}$	A = 2	B1
		g any one of these two tities. Can be implied.	M1
	Let $X = -\frac{1}{2}$, $4 = -2B \implies B = -2$ Let $X = \frac{1}{2}$, $4 = 2C \implies C = 2$ either one of		A1 A1 [4]
Aliter 4. (a) Way 2	$\frac{2(4x^2+1)}{(2x+1)(2x-1)} \equiv A + \frac{B}{(2x+1)} + \frac{C}{(2x-1)}$		
way 2	See below for the award of B1 decide	to award B1 here!! for A = 2	B1
	$2(4x^2+1) \equiv A(2x+1)(2x-1) + B(2x-1) + C(2x+1)$	Forming this identity. Can be implied.	M1
	Equate x^2 , $8 = 4A \implies A = 2$		
	Let $X = -\frac{1}{2}$, $4 = -2B \implies B = -2$ Let $X = \frac{1}{2}$, $4 = 2C \implies C = 2$ either one of		A1 A1
			[4]

If a candidate states one of either B or C correctly then the method mark M1 can be implied.

Question Number	Scheme	Marks	
	$\frac{2}{4-y^2} = \frac{2}{(2-y)(2+y)} = \frac{A}{(2-y)} + \frac{B}{(2+y)} \text{ so } 2 = A(2+y) + B(2-y)$	M1	
	Let $y = -2$, $2 = B(4) \implies B = \frac{1}{2}$, Let $y = 2$, $2 = A(4) \implies A = \frac{1}{2}$	M1	
	giving $\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$	A1 cao (3)	

Question Number	Scheme		Marks
	$27x^2 + 32x + 16 \equiv A(3x+2)(1-x) + B(1-x) + C(3x+2)^2$	Forming this identity	M1
	$x = -\frac{2}{3}, 12 - \frac{64}{3} + 16 = \left(\frac{5}{3}\right)B \implies \frac{20}{3} = \left(\frac{5}{3}\right)B \implies B = 4$ $x = 1, \qquad 27 + 32 + 16 = 25C \implies 75 = 25C \implies C = 3$	Substitutes either $x = -\frac{2}{3}$ or $x = 1$ into their identity or equates 3 terms or substitutes in values to write down three simultaneous equations. Both $B = 4$ and $C = 3$ (Note the A1 is dependent on both method marks in this part.)	M1
	Equate x^2 : $27 = -3A + 9C \Rightarrow 27 = -3A + 27 \Rightarrow 0 = -3A$ $\Rightarrow A = 0$ x = 0, 16 = 2A + B + 4C $\Rightarrow 16 = 2A + 4 + 12 \Rightarrow 0 = 2A \Rightarrow A = 0$	Compares coefficients or substitutes in a third x -value or uses simultaneous equations to show $A = 0$.	B1 [4]

Question Number		Scheme		Marks	
Q	(a)	$f(x) = \frac{4-2x}{(2x+1)(x+1)(x+3)} = \frac{A}{2x+1} + 4-2x = A(x+1)(x+3) + B(2x+1)(x+3)$ A met		M1 M1	
		$x \rightarrow -\frac{1}{2}$, $5 = A(\frac{1}{2})(\frac{5}{2}) \Rightarrow A = 4$ $x \rightarrow -1$, $6 = B(-1)(2) \Rightarrow B = -3$	any one correct constant	A1	
		$x \to -3$, $10 = C(-5)(-2) \Rightarrow C = 1$	all three constants correct	A1	(4)

Question 8

Question Number		Scheme	Marks
	(a) $2x^2$	A = 2 + 5x - 10 = A(x-1)(x+2) + B(x+2) + C(x-1)	B1
	$x \rightarrow 1$	$-3 = 3B \implies B = -1$	M1 A1
	$x \rightarrow -2$	$-12 = -3C \implies C = 4$	A1 (4)

Question Number	Scheme		Marks	
(a)	$\frac{5}{(x-1)(3x+2)} = \frac{5}{2}$	$\frac{A}{x-1} + \frac{B}{3x+2}$		
		5 = A(3x+2) + B(x-1)		
	$x \rightarrow 1$	$5 = 5A \implies A = 1$	M1 A1	
	$x \rightarrow -\frac{2}{3}$	$5 = -\frac{5}{3}B \implies B = -3$	A1 (3)	

Question Number	Scheme			Marks	
	9x ² :	= A(x-1)(2x+1) + B(2x+1) + C(x+1)	$(-1)^2$	В1	
	$x \rightarrow 1$	$9 = 3B \implies B = 3$		M1	
	$x \rightarrow -\frac{1}{2}$	$\frac{9}{4} = \left(-\frac{3}{2}\right)^2 C \implies C = 1$	Any two of A , B , C	A1	
	à	$9 = 2A + C \implies A = 4$ is for finding A.	All three correct	A1	(4) [4]
		$0 = -A + 2B - 2C \implies A = 4$ $\text{erms} 0 = -A + B + C \implies A = 4$			