

Arc Length and Areas of Sectors - Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 05 Q7

Question Number	Scheme	Marks
-	(a) $r\theta = 8 \times 0.7 = 5.6(cm)$	M1, A1
	(b) $BC^2 = 8^2 + 11^2 - 2 \times 8 \times 11 \times \cos 0.7$ $\Rightarrow BC = 7.098 \text{ or } 7.10 \text{ (Awrt) or } \sqrt{(50.4)} \text{ or better}$ Perimeter = (a) + (11-8) + BC, = 15.7(cm)	(2) M1 A1 M1, A1cao (4)
	(c) $\Delta = \frac{1}{2}ab\sin c = \frac{1}{2} \times 11 \times 8 \times \sin 0.7$	M1, A1
	Sector = $\frac{1}{2}r^2\theta = \frac{1}{2}\times 8^2 \times 0.7$	M1, A1
	Area of $R = 28.345 22.4 = 5.9455 = 5.95(cm^2)$	A1 (5)
		(11)
	(c) Final A1 accept 3sf or better	
	 (a) and (c) M1 for quoting and attempting to use correct formula (b) 1st M1 for attempting to use cosine rule (formula given) 	

Question 2: June 05 Q7

Question number	Scheme	Marks	
	(a) $\frac{\sin x}{8} = \frac{\sin 0.5}{7}$ or $\frac{8}{\sin x} = \frac{7}{\sin 0.5}$, $\sin x = \frac{8\sin 0.5}{7}$	M1 A1ft	
	$\sin x = 0.548$	A1	(3)
	(b) $x = 0.58$ (α) (This mark may be earned in (a)).	B1	
	$\pi - \alpha = 2.56$	M1 A1ft	(3)
			6
	(a) M: Sine rule attempt (sides/angles possibly the "wrong way round"). A1ft: follow through from sides/angles are the "wrong way round".		
	Too many d.p. given: Maximum 1 mark penalty in the complete question. (Deduct on first occurrence).		

Question 3: Jan 06 Q5

Question number		Scheme	Marks	
	(a)	$\cos A\hat{O}B = \frac{5^2 + 5^2 - 6^2}{2 \times 5 \times 5} \text{or}$	M1	
		$\sin \theta = \frac{3}{5}$ with use of $\cos 2\theta = 1 - 2\sin^2 \theta$ attempted		
		$=\frac{7}{25}$ *	A1cso	(2)
	(b)	$A\hat{O}B = 1.2870022$ radians 1.287 or better	B1	(1)
	(c)	Sector $=\frac{1}{2} \times 5^2 \times (b)$, = 16.087 (AWRT) <u>16.1</u>	M1 A1	(2)
	(d)	Triangle = $\frac{1}{2} \times 5^2 \times \sin(b)$ or $\frac{1}{2} \times 6 \times \sqrt{5^2 - 3^2}$	M1	
		Segment = (their sector) - their triangle	dM1	
		= (sector from c) $-12 = (AWRT)4.1$ (ft their part(c))	A1ft	(3) 8
	(a)	M1 for a full method leading to cos \hat{AOB} [N.B. Use of calculator is M0] (usual rules about quoting formulae)	ĺ	
	(b)	Use of (b) in degrees is M0		
	(d)	1^{st} M1 for full method for the area of triangle <i>AOB</i>		
		2^{nd} M1 for their sector – their triangle. Dependent on 1^{st} M1 in part (d).		
		A1ft for their sector from part (c) -12 [or 4.1 following a correct restart].		

Question 4: June 06 Q8

Question number	Schen	ne	Marks	
	(a) $r\theta = 2.12 \times 0.65$	1.38 (m)	M1 A1	(2)
	(b) $\frac{1}{2}r^2\theta = \frac{1}{2} \times 2.12^2 \times 0.65$	1.46 (m ²)	M1 A1	(2)
	(c) $\frac{\pi}{2} - 0.65$	0.92 (radians) (a)	M1 A1	(2)
	(d) $\Delta ACD : \frac{1}{2}(2.12)(1.86)\sin\alpha$ (W	The the value of α from part (c))	м1	
	Area = " 1.46 " + " 1.57 ",		M1 A1	(3)
				9
	angle changed to degrees (a (b) M1: Use of $\frac{1}{2}r^2\theta$ with $r = 2.12$ angle changed to degrees (a	or 1.86, and θ = 0.65, or equiv. method for the illow awrt 37°). r subtracting awrt 37 from 90 (degrees),). <u>ind used throughout (a), (b) and (c):</u> ld score M0A0, M1A0, M1A0.		
	Second M1: Adding answer to (1) <u>Failure to round to 2 d.p:</u> Penalise only once, on the first occu. <u>If 0.65 is taken as degrees throughou</u>	b) to their ΔACD . rrence, then accept awrt.		

_

Question 5: Jan 07 Q9

Question Number	Scheme	Marks
(a)	$\cos PQR = \frac{6^2 + 6^2 - (6\sqrt{3})^2}{2 \times 6 \times 6} \left\{ = -\frac{1}{2} \right\}$ $PQR = \frac{2\pi}{3}$	M1, A1
		A1 (3)
(b)	$Area = \frac{1}{2} \times 6^2 \times \frac{2\pi}{3} m^2$	M1
	$= 12\pi m^2 $ (*)	A1cso (2)
(c)	Area of $\Delta = \frac{1}{2} \times 6 \times 6 \times \sin \frac{2\pi}{3} \text{ m}^2$	M1
	$=9\sqrt{3}$ m ²	A1cso (2)
(d)	Area of segment = $12\pi - 9\sqrt{3}$ m ²	M1
	$= 22.1 \text{ m}^2$	A1 (2)
(e)	Perimeter = $6 + 6 + \left[6 \times \frac{2\pi}{3}\right]$ m	M1
	= 24.6 m	A1ft (2) (11)

Notes

110105	
9(a) N.B. $a^2 = b^2 + c^2 - 2bc \cos A$ is in the formulae book.	
Use of cosine rule for $\cos PQR$. Allow A, θ or other symbol for angle.	M1
(i) $(6\sqrt{3})^2 = 6^2 + 6^2 - 2.6.6 \cos PQR$: Apply usual rules for formulae: (a) formula not stated,	
must be correct, (b) correct formula stated, allow one sign slip when substituting.	
$\pm 6^2 \pm 6^2 \pm (6\sqrt{3})^2$	
or (ii) $\cos PQR = \frac{\pm 6^2 \pm 6^2 \pm (6\sqrt{3})^2}{\pm 2 \times 6 \times 6}$	
Also allow invisible brackets [so allow $6\sqrt{3}^2$] in (i) or (ii)	
$6^2 + 6^2 - (6\sqrt{3})^2$ 36 1	A1
Correct expression $\frac{6^2 + 6^2 - (6\sqrt{3})^2}{2 \times 6 \times 6}$ o.e. (e.g. $-\frac{36}{72}$ or $-\frac{1}{2}$)	
	A1
$\frac{2\pi}{3}$	

Question 6: Jan 08 Q8

Question Number	Scheme	Ma	irks
(a)	$(x-6)^2 + (y-4)^2 = ; 3^2$	B1; B	1 (2)
(b)	Complete method for <i>MP</i> : = $\sqrt{(12-6)^2 + (6-4)^2}$	M1	
	$=\sqrt{40}$ or awrt 6.325	A1	
	[These first two marks can be scored if seen as part of solution for (c)]		
	Complete method for $\cos \theta$, $\sin \theta$ or $\tan \theta$ e.g. $\cos \theta = \frac{MT}{MP} = \frac{3}{candidate' s\sqrt{40}}$ (= 0.4743) (θ = 61.6835°) [If TP = 6 is used, then M0] $\theta = 1.0766 \text{ rad}$ AG	M1	(4)
(c)	Complete method for area <i>TMP</i> ; e.g. = $\frac{1}{2} \times 3 \times \sqrt{40} \sin \theta$ = $\frac{3}{2} \sqrt{31}$ (= 8.3516) allow awrt 8.35	M1 A1	
	Area (sector) $MTQ = 0.5 \times 3^2 \times 1.0766$ (= 4.8446)	M1	
	Area TPQ = candidate' s (8.3516 4.8446)	M1	
	= 3.507 awrt [Note: 3.51 is A0]	A1 [11]	(5)
Notes	(a) Allow 9 for 3 ² .		
	(b) First M1 can be implied by $\sqrt{40}$ 40or $\sqrt{31}$		
	For second M1:		
	May find TP = $\sqrt{(\sqrt{40})^2 - 3^2} = \sqrt{31}$, then either		
	$\sin \theta = \frac{TP}{MP} = \frac{\sqrt{31}}{\sqrt{40}}$ (= 0.8803) or $\tan \theta = \frac{\sqrt{31}}{3}$ (1.8859) or cos rule		
	NB. Answer is given, but allow final A1 if all previous work is correct.		
	(c) First M1: (alternative) $\frac{1}{2} \times 3 \times \sqrt{40 - 9}$		
	Second M1: allow even if candidate's value of <i>θ</i> used. (Despite being given !)		

www.naikermaths.com

Question 7: June 08 Q7

Question Number	Scheme	Marks
(a)	$r\theta = 7 \times 0.8 = 5.6$ (cm)	M1 A1 (2)
(<i>b</i>)	$\frac{1}{2}r^2\theta = \frac{1}{2} \times 7^2 \times 0.8 = 19.6 \text{ (cm}^2\text{)}$	M1 A1 (2)
(c)	$BD^{2} = 7^{2} + (\text{their } AD)^{2} - (2 \times 7 \times (\text{their } AD) \times \cos 0.8)$	M1
	$BD^2 = 7^2 + 3.5^2 - (2 \times 7 \times 3.5 \times \cos 0.8)$ (or awrt 46° for the angle)	A1
	Perimeter = (their DC) + "5.6" + "5.21" = 14.3 (cm)	M1 A1 (4)
(<i>d</i>)	$\Delta ABD = \frac{1}{2} \times 7 \times (\text{their } AD) \times \sin 0.8 (\text{ft their } AD) (= 8.78)$	M1 A1 ft
	Area = "19.6" - "8.78" = 10.8 (cm^2)	M1 A1 (4)
		(12 marks)

Question 8: Jan 09 Q7

Question Number	Scheme	Marks	5
(a)	$\frac{1}{2}r^2\theta = \frac{1}{2} \times 6^2 \times 2.2 = 39.6 (\text{cm}^2)$	M1 A1	(2)
(b)	$\left(\frac{2\pi - 2.2}{2}\right) \pi - 1.1 = 2.04$ (rad)	M1 A1	(2)
	(c) $\Delta DAC = \frac{1}{2} \times 6 \times 4 \sin 2.04$ (≈ 10.7)	M1 A1ft	
		M1 A1	(4) [8]
(a)	M1: Needs θ in radians for this formula. Could convert to degrees and use degrees formula.		
	A1: Does not need units. Answer should be 39.6 exactly. Answer with no working is M1 A1. This M1A1 can only be awarded in part (a).		
(b)	M1: Needs full method to give angle in radians A1: Allow answers which round to 2.04 (Just writes 2.04 – no working is	2/2)	
(c)	M1: Use $\frac{1}{2} \times 6 \times 4 \sin A$ (if any other triangle formula e.g. $\frac{1}{2}b \times h$ is used must be complete for this mark) (No value needed for A, but should not b A1: ft the value obtained in part (b) – need not be evaluated- could be in M1: Uses Total area = sector + 2 triangles or other complete method A1: Allow answers which round to 61. (Do not need units)	e using 2.2	
	Special case degrees: Could get M0A0, M0A0, M1A1M1A0 Special case: Use $\Delta BDC - \Delta BAC$ Both areas needed for first M1 Total area = sector + area found is second M1 NB Just finding lengths BD, DC, and angle BDC then assuming area BDC is		

Question 9: June 09 Q9

Question Number	Scheme	Marks
Q (a)	(Arc length =) $r\theta = r \times 1 = r$. Can be awarded by implication from later work, e.g.	B1
	$3rh \text{ or } (2rh + rh) \text{ in the } S \text{ formula.}$ (Requires use of $\theta = 1$).	
	(Sector area =) $\frac{1}{2}r^2\theta = \frac{1}{2}r^2 \times 1 = \frac{r^2}{2}$. Can be awarded by implication from later	B1
	work, e.g. the correct volume formula. (Requires use of $\theta = 1$).	
	Surface area = 2 sectors + 2 rectangles + curved face	The second s
	$(= r^2 + 3rh)$ (See notes below for what is allowed here)	M1
	$Volume = 300 = \frac{1}{2}r^2h$	B1
	Sub for h: $S = r^2 + 3 \times \frac{600}{r} = r^2 + \frac{1800}{r}$ (*)	A1cso (5)
(b)	$\frac{dS}{dr} = 2r - \frac{1800}{r^2} \text{or} 2r - 1800r^{-2} \text{or} 2r + -1800r^{-2}$	M1A1
	$\frac{dS}{dr} = 0 \implies r^3 =, r = \sqrt[3]{900}, \text{ or AWRT 9.7} (NOT - 9.7 \text{ or } \pm 9.7)$	M1, A1 (4)
(c)	$\frac{d^2S}{dr^2} = \dots$ and consider sign, $\frac{d^2S}{dr^2} = 2 + \frac{3600}{r^3} > 0$ so point is a minimum	M1, A1ft (2
(d)	$S_{\min} = (9.65)^2 + \frac{1800}{0.65}$	
	(Using their value of r, however found, in the given S formula)	M1
	= 279.65 (AWRT: 280) (Dependent on full marks in part (b))	A1 (2 [13
(a)	M1 for attempting a formula (with terms added) for surface area. May be incomplete	e or wrong and
	may have extra term(s), but must have an r^2 (or $r^2\theta$) term and an rh (or $rh\theta$) term.	
(b)	In parts (b), (c) and (d), ignore labelling of parts	
	1^{st} M1 for attempt at differentiation (one term is sufficient) $r^n \to kr^{n-1}$	
	2^{nd} M1 for setting their derivative (a 'changed function') = 0 and solving as far as r^3	=
	(depending upon their 'changed function', this could be $r =$ or $r^2 =$, etc	
	the algebra <u>must deal with a negative power</u> of r and should be sound apart	from
(c)	possible <u>sign</u> errors, so that $r^n = \dots$ is consistent with their derivative).	
(c)	M1 for attempting second derivative (one term is sufficient) r ⁿ → kr ⁿ⁻¹ , and conside its sign. Substitution of a value of r is not required. (Equating it to zero is M0).	ring
	A1ft for a correct second derivative (or correct ft from their first derivative) and a v	alid reason
	(e.g. > 0), and conclusion. The actual value of the second derivative, if found, can be	
	score this mark as ft, their second derivative must indicate a minimum.	-
	Alternative:	
	M1: Find <u>value</u> of $\frac{dS}{dr}$ on each side of their value of r and consider sign.	
	A1ft: Indicate sign change of negative to positive for $\frac{dS}{dr}$, and conclude minimum.	
	Alternative:	
	M1: Find value of S on each side of their value of r and compare with their 279.65.	
	A1ft: Indicate that both values are more than 279.65, and conclude minimum.	

Question 10: Jan 10 Q4

Question Number	Scheme	Marks
(a)	Either $\frac{\sin(A\hat{C}B)}{5} = \frac{\sin 0.6}{4}$ $\therefore A\hat{C}B = \arcsin(0.7058)$ or $4^2 = b^2 + 5^2 - 2 \times b \times 5 \cos 0.6$ $= [0.7835 \text{ or } 2.358]$ $\therefore b = \frac{10\cos 0.6 \pm \sqrt{(100\cos^2 0.6 - 36)}}{2}$ Use angles of triangle $A\hat{B}C = \pi - 0.6 - A\hat{C}B$ $(But as AC is the longest side so)$ $A\hat{B}C = 1.76$ (*)(3sf) [Allow 100.7° \rightarrow 1.76]In degrees $0.6 = 34.377^\circ$, $A\hat{C}B = 44.9^\circ$ or $4^2 = b^2 + 5^2 - 2 \times b \times 5\cos 0.6$	M1 M1 M1, A1 (4
(b)	$\begin{bmatrix} C\hat{B}D = \pi - 1.76 = 1.38 \end{bmatrix} \text{ Sector area} = \frac{1}{2} \times 4^2 \times (\pi - 1.76) = \begin{bmatrix} 11.0 \\ -11.1 \end{bmatrix} \frac{1}{2} \times 4^2 \times 79.3 \text{ is M0}$	M1
	Area of $\triangle ABC = \frac{1}{2} \times 5 \times 4 \times \sin(1.76) = [9.8]$ or $\frac{1}{2} \times 5 \times 4 \times \sin 101$ Required area = awrt 20.8 or 20.9 or 21.0 or gives 21 (2sf) after correct work.	M1 A1 (3 [7
(a)	1 st M1 for correct use of sine rule to find <i>ACB</i> or cosine rule to find <i>b</i> (M0 for ABC here or for use of sin x v could be <i>ABC</i>) 2 ^{sd} M1 for a correct expression for angle <i>ACB</i> (This mark may be implied by .7835 or by arcsin (.7058)) and accuracy. In second method this M1 is for correct expression for <i>b</i> – may be implied by 6.96. [Note 10 cos 0.0 (do not need two answers) 3 ^{sd} M1 for a correct method to get angle <i>ABC</i> in method (i) or sin <i>ABC</i> or cos <i>ABC</i> , in method (ii) (If sin <i>B</i> > 1 M1A0) A1cso for correct work leading to 1.76 3sf. Do not need to see angle 0.1835 considered and rejected.	needs 6 ≈ 8.3]
(b)	1^{st} M1 for a correct expression for sector area or a value in the range $11.0 - 11.1$ 2^{sd} M1 for a correct expression for the area of the triangle or a value of 9.8 Ignore 0.31 (working in degrees) as subsequent work. A1 for answers which round to 20.8 or 20.9 or 21.0. No need to see units.	
(a)	Special case If answer 1.76 is assumed then usual mark is M0 M0 M0 A0. A Fully checked method mark M1 M1 M0 A0. A maximum of 2 marks. The mark is either 2 or 0. Either M1 for $A\hat{C}B$ is found to be 0,7816 (angles of triangle) then M1 for checking $\frac{\sin(A\hat{C}B)}{5} = \frac{\sin 0.6}{4}$ with conclusion giving numerical answers This gives a maximum mark of 2/4 <u>OR M1</u> for <i>b</i> is found to be 6.97 (cosine rule) M1 for checking $\frac{\sin(ABC)}{b} = \frac{\sin 0.6}{4}$ with conclusion giving numerical answers This gives a maximum mark of 2/4 <u>Candidates making this assumption need a complete method. They cannot earn M1M0.</u> So the score will be 0 or 2 for part (a). Circular arguments earn 0/4.	y be worth

Question 11: June 10 Q6

Question Number	Scheme	Marks
	(a) $r\theta = 9 \times 0.7 = 6.3$ (Also allow 6.30, or awrt 6.30)	M1 A1 (2
	(b) $\frac{1}{2}r^2\theta = \frac{1}{2} \times 81 \times 0.7 = 28.35$ (Also allow 28.3 or 28.4, or awrt 28.3 or 28.4) (Condone 28.35 ² written instead of 28.35 cm ²)	M1 A1
	(c) $\tan 0.7 = \frac{AC}{9}$ AC = 7.58 (Allow awrt) <u>NOT</u> 7.59 (see below)	M1 A1
	(d) Area of triangle $AOC = \frac{1}{2}(9 \times \text{their } AC)$ (or other complete method) Area of $R = "34.11" - "28.35"$ (triangle - sector) or (sector - triangle) (needs a <u>value</u> for each) = 5.76 (Allow awrt)	M1 M1 A1 (3
	 (a) M: Use of rθ (with θ in radians), or equivalent (could be working in degrees with a correct degrees formula). (b) M: Use of ¹/₂ r²θ (with θ in radians), or equivalent (could be working in degrees with a correct degrees formula). (c) M: Other methods must be fully correct, e.g. ^{AC}/_{sin 0.7} = ⁹/_{sin(^π/₂ - 0.7)} (π - 0.7) instead of (^π/₂ - 0.7) here is not a fully correct method. Premature approximation (e.g. taking angle C as 0.87 radians): This will often result in loss of A marks, e.g. AC = 7.59 in (c) is A0. 	

Question 12: Jan 11 Q2

Question Number	Scheme	Marks	
	$11^2 = 8^2 + 7^2 - (2 \times 8 \times 7 \cos C)$	M1	
	$\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7} $ (or equivalent)	A1	
	$\left\{\hat{C}=1.64228\right\}$ \Rightarrow $\hat{C}=$ awrt 1.64	A1 cso	
		(3)	
(b)	Use of Area $\triangle ABC = \frac{1}{2}ab\sin(\text{their }C)$, where a, b are any of 7, 8 or 11.	M1	
	$=\frac{1}{2}(7 \times 8)\sin C$ using the value of their C from part (a).	A1 ft	
	$\{= 27.92848 \text{ or } 27.93297\} = awrt 27.9 \text{ (from angle of either } 1.64^{\circ} \text{ or } 94.1^{\circ}\text{)}$	A1 cso	
		[6	
(-)	Notes		
(a)	M1 is also scored for $8^2 = 7^2 + 11^2 - (2 \times 7 \times 11 \cos C)$ or $7^2 = 8^2 + 11^2 - (2 \times 8 \times 11 \cos C)$		
	or $\cos C = \frac{7^2 + 11^2 - 8^2}{2 \times 7 \times 11}$ or $\cos C = \frac{8^2 + 11^2 - 7^2}{2 \times 8 \times 11}$		
	1 st A1: Rearranged correctly to make $\cos C = \dots$ and numerically correct (possibly	•	
	unsimplified). Award A1 for any of $\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7}$ or $\cos C = \frac{-8}{112}$ or $\cos C = -\frac{1}{14}$ or		
	$\cos C = \operatorname{awrt} - 0.071.$		
	SC: Also allow $1^{st} A1$ for $112\cos C = -8$ or equivalent.		
	Also note that the 1 st A1 can be implied for \hat{C} = awrt 1.64 or \hat{C} = awrt 94.1°.		
	Special Case: $\cos C = \frac{1}{14}$ or $\cos C = \frac{11^2 - 8^2 - 7^2}{2 \times 8 \times 7}$ scores a SC: M1A0A0.		
	2 nd A1: for awrt 1.64 cao		
	Note that $A = 0.6876^{c}$ (or 39.401°), $B = 0.8116^{c}$ (or 46.503°)		
(Ь)	M1: alternative methods must be fully correct to score the M1. For any (or both) of the M1 or the 1^{st} A1; their C can either be in degrees or radia	ns.	
	Candidates who use $\cos C = \frac{1}{14}$ to give $C = 1.499$, can achieve the correct answer of awrt		
	27.9 in part (b). These candidates will score M1A1A0cso, in part (b).		
	Finding $C = 1.499$ in part (a) and achieving awrt 27.9 with no working scores M1A1A0.		
	Otherwise with no working in part (b), awrt 27.9 scores M1A1A1. Special Case: If the candidate gives awrt 27.9 from any of the below then award M1A1A1.		
	$\frac{1}{2}(7 \times 11)\sin(0.8116^{\circ} \text{ or } 46.503^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) =$	awrt 27.9.	
	Alternative: Hero's Formula: $A = \sqrt{13(13-11)(13-8)(13-7)} = \text{awrt } 27.9$, where M1 is		
	attempt to apply $A = \sqrt{s(s-11)(s-8)(s-7)}$ and the first A1 is for the correct application of		
	the formula.		

Question 13: June 11 Q5

Question Number	Scheme	Marks	
(a)	$\frac{1}{2}r^2\theta = \frac{1}{2}(6)^2\left(\frac{\pi}{3}\right) = 6\pi \text{ or } 18.85 \text{ or awrt } 18.8 \text{ (cm)}^2$ Using $\frac{1}{2}r^2\theta$ (See notes) $6\pi \text{ or } 18.85 \text{ or awrt } 18.8$	M1 A1	
(b)	$\sin\left(\frac{\pi}{6}\right) = \frac{r}{6-r}$ $\sin\left(\frac{\pi}{6}\right) \text{ or } \sin 30^* = \frac{r}{6-r}$	[2 M1	
	$\frac{1}{2} = \frac{r}{6-r}$ Replaces sin by numeric value $6 - r = 2r \Rightarrow r = 2$ $r = 2$	dM1 A1 cso	
		[3	
(c)	Area = $6\pi - \pi (2)^2 = 2\pi$ or awrt 6.3 (cm) ² 2π or awrt 6.3	10000	
(a)	M1: Needs θ in radians for this formula. Candidate could convert to degrees and use the degrees formula. A1: Does not need units. Answer should be either 6π or 18.85 or awrt 18.8 Correct answer with no working is M1A1.		
(b) (c)	This M1A1 can only be awarded in part (a). M1: Also allow $\cos\left(\frac{\pi}{3}\right)$ or $\cos 60^{\circ} = \frac{r}{6-r}$.		
	1 [#] M1: Needs correct trigonometry method. Candidates could state $sin\left(\frac{\pi}{6}\right) = \frac{r}{x}$ and $x + r$ equivalent in their working to gain this method mark.	= 6 or	
	dM1: Replaces sin by numerical value. $0.009 = \frac{r}{6-r}$ from working "incorrectly" in degrate for dM1. A1: For $r = 2$ from correct solution only.	ees is fin	
	<u>Alternative:</u> 1^{st} M1 for $\frac{r}{\partial C} = \sin 30$ or $\frac{r}{\partial C} = \cos 60$. 2^{nd} M1 for $OC = 2r$ and then A1 for $r = 2$. <u>Note</u> seeing $OC = 2r$ is M1M1.		
	Special Case: If a candidate states an answer of $r = 2$ (must be in part (b)) as a guess or from an incorrect method then award SC: M0M0B1. Such a candidate could then go on to score M1A1 in part (c).		
	M1: For "their area of sector – their area of circle", where $r > 0$ is ft from their answer to part (b). Allow the method mark if "their area of sector" < "their area of circle". The candidate must show somewhere in their working that they are subtracting the correct way round, even if their answer is negative. Some candidates in part (c) will either use their value of r from part (b) or even introduce a value of r		
	in part (c). You can apply the scheme to award either M0A0 or M1A0 or M1A1 to these candidates. <u>Note:</u> Candidates can get M1 by writing "their part (a) answer $-\pi r^2$ ", where the radius of the circle is not substituted.		
	A1: cao – accept exact answer or awrt 6.3 Correct answer only with no working in (c) gets M1A1 Reware: The answer in (c) is the same as the arc length of the pendent		
	Beware: The answer in (c) is the same as the arc length of the pendant		