Arc Length and Areas of Sectors - Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 05 Q7

Question	Scheme	Marks
	(a) $r \theta=8 \times 0.7=5.6(\mathrm{~cm})$ (b) $B C^{2}=8^{2}+11^{2}-2 \times 8 \times 11 \times \cos 0.7$ $\Rightarrow B C=7.098$ or $7.10(\mathrm{Awrt})$ or $\sqrt{(50.4)}$ or better Perimeter $=(a)+(11-8)+B C,=15.7(\mathrm{~cm})$ (c) $\Delta=\frac{1}{2} a b \sin c=\frac{1}{2} \times 11 \times 8 \times \sin 0.7$ Sector $=\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 8^{2} \times 0.7$ Area of $R=28.345 \ldots . .-22.4=5.9455=5.95\left(\mathrm{~cm}^{2}\right)$	M1, A1 (2) M1 A1 M1, A1cao (4) M1, A1 M1, A1 A1 (5)
	(c) Final A1 accept 3 sf or better (a) and (c) M1 for quoting and attempting to use correct formula (b) $1^{\text {st }} \mathrm{M} 1$ for attempting to use cosine rule (formula given)	

Question 2: June 05 Q7

Question 3: Jan 06 Q5

Question	Scheme	Marks
	(a) $\cos A \hat{O} B=\frac{5^{2}+5^{2}-6^{2}}{2 \times 5 \times 5}$ or $\sin \theta=\frac{3}{5}$ with use of $\cos 2 \theta=1-2 \sin ^{2} \theta$ attempted $=\frac{7}{25} \quad *$ (b) $A \hat{O} B=1.2870022 \ldots \quad$ radians 1.287 or better (c) Sector $=\frac{1}{2} \times 5^{2} \times(b),=16.087 \ldots$ (AWRT) 16.1 (d) Triangle $=\frac{1}{2} \times 5^{2} \times \sin (b)$ or $\frac{1}{2} \times 6 \times \sqrt{5^{2}-3^{2}}$ Segment $=$ (their sector) - their triangle $=(\text { sector from } \mathrm{c})-12=(\mathrm{AWRT}) \underline{4.1}$	M1 A1cso (2) B1 (1) M1 A1 M1 dM1 A1ft
	(a) M1 for a full method leading to $\cos A \hat{O} B[$ N.B. Use of calculator is M 0$]$ (usual rules about quoting formulae) (b) Use of (b) in degrees is M0 (d) $1^{\text {st }} \mathrm{M} 1$ for full method for the area of triangle $A O B$ $2^{\text {nd }} \mathrm{M} 1$ for their sector - their triangle. Dependent on $1^{\text {st }} \mathrm{M} 1$ in part (d). A1ft for their sector from part (c) -12 [or 4.1 following a correct restart].	

Question 4: June 06 Q8

Notes

$9\left(\right.$ a) N.B. $a^{2}=b^{2}+c^{2}-2 b c \cos A$ is in the formulae book.	
Use of cosine rule for $\cos P Q R$. Allow A, θ or other symbol for angle. (i) $(6 \sqrt{3})^{2}=6^{2}+6^{2}-2.6 .6 \cos P Q R$: Apply usual rules for formulae: (a) formula not stated, must be correct, (b) correct formula stated, allow one sign slip when substituting. or (ii) $\cos P Q R=\frac{ \pm 6^{2} \pm 6^{2} \pm(6 \sqrt{3})^{2}}{ \pm 2 \times 6 \times 6}$ Also allow invisible brackets [so allow $6 \sqrt{3}^{2}$] in (i) or (ii)	
Correct expression $\frac{6^{2}+6^{2}-(6 \sqrt{3})^{2}}{2 \times 6 \times 6}$ o.e. (e.g. $-\frac{36}{72}$ or $-\frac{1}{2}$)	
$\frac{2 \pi}{3}$	A1

Question 6: Jan 08 Q8

Question Number	Scheme	Marks
(a)	$(x-6)^{2}+(y-4)^{2}=; 3^{2}$	B1; B1 (2)
(b)	Complete method for MP: $=\sqrt{(12-6)^{2}+(6-4)^{2}}$	M1
	$=\sqrt{40}$ or awrt 6.325	A1
	[These first two marks can be scored if seen as part of solution for (c)]	
	Complete method for $\cos \theta, \sin \theta$ or $\tan \theta$ e.g. $\cos \theta=\frac{\mathrm{MT}}{\mathrm{MP}}=\frac{3}{\text { candidate' } s \sqrt{40}} \quad(=0.4743) \quad\left(\theta=61.6835^{\circ}\right)$ [If TP $=6$ is used, then M0]	M1
	$\theta=1.0766 \mathrm{rad}$ AG	A1 (4)
(c)	Complete method for area TMP; e.g. $=\frac{1}{2} \times 3 \times \sqrt{40} \sin \theta$	M1
	$=\frac{3}{2} \sqrt{31} \quad(=8.3516 .$.$) allow awrt 8.35$	A1
	Area (sector) $M T Q=0.5 \times 3^{2} \times 1.0766 \quad(=4.8446 \ldots)$	M1
	Area $T P Q=$ candidate' $\mathrm{s}(8.3516 . .-4.8446 .$.	M1
	$\begin{aligned} & =3.507 \text { awrt } \\ & {[\text { Note: } 3.51 \text { is A0] }} \end{aligned}$	$\begin{array}{cc} \text { A1 } \\ {[11]} \end{array}$
Notes		
	(b) First M1 can be implied by $\sqrt{ }$ 40or $\sqrt{ } 31$	
	For second M1:	
	May find TP $=\sqrt{(\sqrt{40})^{2}-3^{2}}=\sqrt{31}$, then either $\sin \theta=\frac{T P}{M P}=\frac{\sqrt{31}}{\sqrt{40}}(=0.8803 \ldots)$ or $\tan \theta=\frac{\sqrt{31}}{3}$ (1.8859..) or cos rule	
	NB. Answer is given, but allow final Al if all previous work is correct.	
	(c) First M1: (alternative) $\frac{1}{2} \times 3 \times \sqrt{40-9}$	
	Second M1: allow even if candidate' s value of θ used. (Despite being given !)	

Question 7: June 08 Q7

Question Number	Scheme	Marks
(a)	$r \theta=7 \times 0.8=5.6 \quad(\mathrm{~cm})$	M1 A1 (2)
(b)	$\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 7^{2} \times 0.8=19.6\left(\mathrm{~cm}^{2}\right)$	M1 A1 (2)
(c)	$B D^{2}=7^{2}+(\text { their } A D)^{2}-(2 \times 7 \times($ their $A D) \times \cos 0.8)$	M1
	$B D^{2}=7^{2}+3.5^{2}-(2 \times 7 \times 3.5 \times \cos 0.8) \quad$ (or awrt 46° for the angle)	A1
	Perimeter $=($ their $D C)+" 5.6 "+" 5.21 "=14.3(\mathrm{~cm})$	M1 A1 (4)
(d)	$\triangle A B D=\frac{1}{2} \times 7 \times($ their $A D) \times \sin 0.8 \quad(\mathrm{ft}$ their $A D) \quad(=8.78 \ldots)$	M1 A1 ft
	Area $=$ "19.6" -"8.78 \ldots " $=10.8\left(\mathrm{~cm}^{2}\right)$	M1 A1 (4)
		(12 marks)

Question Number	Scheme Marks
	$\begin{align*} & \frac{1}{2} r^{2} \theta=\frac{1}{2} \times 6^{2} \times 2.2=39.6 \quad\left(\mathrm{~cm}^{2}\right) \tag{2}\\ & \left(\frac{2 \pi-2.2}{2}=\right) \pi-1.1=2.04(\mathrm{rad}) \tag{2} \end{align*}$ (c) $\triangle D A C=\frac{1}{2} \times 6 \times 4 \sin 2.04 \quad(\approx 10.7)$ Total area $=$ sector +2 triangles $=61 \quad\left(\mathrm{~cm}^{2}\right)$
(a) (b) (c)	M1: Needs θ in radians for this formula. Could convert to degrees and use degrees formula. A1: Does not need units. Answer should be 39.6 exactly. Answer with no working is M1 A1. This M1A1 can only be awarded in part (a). M1: Needs full method to give angle in radians Al: Allow answers which round to 2.04 (Just writes 2.04 - no working is $2 / 2$) M1: Use $\frac{1}{2} \times 6 \times 4 \sin A$ (if any other triangle formula e.g. $\frac{1}{2} b \times h$ is used the method must be complete for this mark) (No value needed for A, but should not be using 2.2) Al : ft the value obtained in part (b) - need not be evaluated- could be in degrees M1: Uses Total area $=$ sector +2 triangles or other complete method A1: Allow answers which round to 61 . (Do not need units) Special case degrees: Could get M0A0, M0A0, M1A1M1A0 Special case: Use $\triangle B D C-\triangle B A C$ Both areas needed for first M1 Total area $=$ sector + area found is second M1 NB Just finding lengths $B D, D C$, and angle $B D C$ then assuming area $B D C$ is a sector to find area BDC is $0 / 4$

Question 9: June 09 Q9

Question Number	Scheme Marks
Q (a)	(Arc length $=) r \theta=r \times 1=r$. Can be awarded by implication from later work, e.g. $3 r h$ or $(2 r h+r h)$ in the S formula. (Requires use of $\theta=1$). (Sector area $=$) $\frac{1}{2} r^{2} \theta=\frac{1}{2} r^{2} \times 1=\frac{r^{2}}{2}$. Can be awarded by implication from later work, e.g. the correct volume formula. (Requires use of $\theta=1$). Surface area $=2$ sectors +2 rectangles + curved face $\left(=r^{2}+3 r h\right) \quad \text { (See notes below for what is allowed here) }$ Volume $=300=\frac{1}{2} r^{2} h$ Sub for $h: S=r^{2}+3 \times \frac{600}{r}=r^{2}+\frac{1800}{r}$ $\frac{\mathrm{d} S}{\mathrm{~d} r}=2 r-\frac{1800}{r^{2}}$ or $2 r-1800 r^{-2}$ or $2 r+-1800 r^{-2}$ $\frac{\mathrm{d} S}{\mathrm{~d} r}=0 \Rightarrow r^{3}=\ldots, \quad r=\sqrt[3]{900}$, or AWRT $9.7 \quad$ (NOT -9.7 or ± 9.7) $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=\ldots . \quad$ and consider sign, $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=2+\frac{3600}{r^{3}}>0$ so point is a minimum $S_{\min }=(9.65 \ldots)^{2}+\frac{1800}{9.65 \ldots}$ (Using their value of r, however found, in the given S formula) $=279.65 \ldots$ (AWRT: 280) (Dependent on full marks in part (b))
(a) (b) (c)	M1 for attempting a formula (with terms added) for surface area. May be incomplete or wrong and may have extra term(s), but must have an r^{2} (or $r^{2} \theta$) term and an $r h$ (or $r h \theta$) term. In parts (b). (c) and (d). ignore labelling of parts $1^{\text {st }}$ M1 for attempt at differentiation (one term is sufficient) $r^{n} \rightarrow k r^{n-1}$ $2^{\text {nd }}$ M1 for setting their derivative (a 'changed function') $=0$ and solving as far as $r^{3}=\ldots$ (depending upon their 'changed function', this could be $r=\ldots$ or $r^{2}=\ldots$, etc., but the algebra must deal with a negative power of r and should be sound apart from possible sign errors, so that $r^{n}=\ldots$ is consistent with their derivative). M1 for attempting second derivative (one term is sufficient) $r^{n} \rightarrow k r^{n-1}$, and considering its sign. Substitution of a value of r is not required. (Equating it to zero is M0). Alft for a correct second derivative (or correct ft from their first derivative) and a valid reason (e.g. >0), and conclusion. The actual value of the second derivative, if found, can be ignored. To score this mark as ft , their second derivative must indicate a minimum. Alternative: M1: Find value of $\frac{\mathrm{d} S}{\mathrm{~d} r}$ on each side of their value of r and consider sign. A1 ft : Indicate sign change of negative to positive for $\frac{\mathrm{d} S}{\mathrm{~d} r}$, and conclude minimum. Alternative: M1: Find value of S on each side of their value of r and compare with their 279.65 . A1 ft: Indicate that both values are more than 279.65 , and conclude minimum.

Question 11: June 10 Q6

Question 12: Jan 11 Q2

Question Number	Scheme ${ }^{\text {a }}$ Marks
(a)	$\begin{aligned} & 11^{2}=8^{2}+7^{2}-(2 \times 8 \times 7 \cos C) \\ & \cos C=\frac{8^{2}+7^{2}-11^{2}}{2 \times 8 \times 7} \text { (or equivalent) } \\ & \{\hat{C}=1.64228 \ldots\} \Rightarrow \hat{C}=\text { awrt } 1.64 \end{aligned}$
(b)	
	Notes
(a)	M1 is also scored for $8^{2}=7^{2}+11^{2}-(2 \times 7 \times 11 \cos C)$ or $7^{2}=8^{2}+11^{2}-(2 \times 8 \times 11 \cos C)$ $\text { or } \cos C=\frac{7^{2}+11^{2}-8^{2}}{2 \times 7 \times 11} \quad \text { or } \quad \cos C=\frac{8^{2}+11^{2}-7^{2}}{2 \times 8 \times 11}$ $1^{\text {st }} \mathrm{A} 1$: Rearranged correctly to make $\cos C=\ldots$ and numerically correct (possibly unsimplified). Award A1 for any of $\cos C=\frac{8^{2}+7^{2}-11^{2}}{2 \times 8 \times 7}$ or $\cos C=\frac{-8}{112}$ or $\cos C=-\frac{1}{14}$ or $\cos C=$ awrt -0.071 . SC: Also allow $1^{\text {st }} \mathrm{A} 1$ for $112 \cos C=-8$ or equivalent. Also note that the $1^{\text {st }} \mathrm{A} 1$ can be implied for $\hat{C}=$ awrt 1.64 or $\hat{C}=$ awrt 94.1°. Special Case: $\cos C=\frac{1}{14}$ or $\cos C=\frac{11^{2}-8^{2}-7^{2}}{2 \times 8 \times 7}$ scores a SC: M1A0A0. $2^{\text {nd }} \mathrm{A} 1$: for awrt 1.64 cao Note that $A=0.6876 \ldots{ }^{c}$ (or $39.401 \ldots{ }^{\circ}$), $B=0.8116 \ldots{ }^{c}$ (or $46.503 \ldots{ }^{\circ}$)
(b)	M1: alternative methods must be fully correct to score the M1. For any (or both) of the M1 or the $1^{\text {st }} \mathrm{A} 1$; their C can either be in degrees or radians. Candidates who use $\cos C=\frac{1}{14}$ to give $C=1.499 \ldots$, can achieve the correct answer of awrt 27.9 in part (b). These candidates will score M1A1A0cso, in part (b). Finding $C=1.499 \ldots$ in part (a) and achieving awrt 27.9 with no working scores M1A1A0. Otherwise with no working in part (b), awrt 27.9 scores M1A1A1. Special Case: If the candidate gives awrt 27.9 from any of the below then award Mlalal. $\frac{1}{2}(7 \times 11) \sin \left(0.8116^{\text {c }} \text { or } 46.503^{\circ}\right)=\text { awrt } 27.9, \frac{1}{2}(8 \times 11) \sin \left(0.6876 \ldots .{ }^{c} \text { or } 39.401 \ldots{ }^{\circ}\right)=\text { awrt } 27.9 .$ Alternative: Hero's Formula: $A=\sqrt{13(13-11)(13-8)(13-7)}=$ awrt 27.9 , where M1 is attempt to apply $A=\sqrt{s(s-11)(s-8)(s-7)}$ and the first A 1 is for the correct application of the formula.

Question 13: June 11 Q5

Question Number	Scheme	Marks
(a)		
(b)	$\sin \left(\frac{\pi}{6}\right)=\frac{r}{6-r}$ $\sin \left(\frac{\pi}{6}\right)$ or $\sin 30^{\circ}=\frac{r}{6-r}$ $\frac{1}{2}=\frac{r}{6-r}$ Replaces \sin by numeric value $6-r=2 r \Rightarrow r=2$ $r=2$	M1 dM1
(c)	Area $=6 \pi-\pi(2)^{2}=2 \pi$ or awrt $6.3(\mathrm{~cm})^{2} \quad$ \|heir area of sector $-\pi r^{2}$	M1
(a)	M1: Needs θ in radians for this formula. Candidate could convert to degrees and use the degrees formula. A1: Does not need units. Answer should be either 6π or 18.85 or awrt 18.8 Correct answer with no working is M1A1. This M1A1 can only be awarded in part (a). M1: Also allow $\cos \left(\frac{\pi}{3}\right)$ or $\cos 60^{\circ}=\frac{r}{6-r}$. $1^{\text {t }}$ M1: Needs correct trigonometry method. Candidates could state $\sin \left(\frac{\pi}{6}\right)=\frac{r}{x}$ and $x+r=6$ or equivalent in their working to gain this method mark. $\mathrm{dM1}$: Replaces \sin by numerical value. $0.009 \ldots=\frac{r}{6-r}$ from working "incorrectly" in degrees is fine here for dM 1 . A1: For $r=2$ from correct solution only. Alternative: $1^{\text {st }} \mathrm{M} 1$ for $\frac{r}{O C}=\sin 30$ or $\frac{r}{O C}=\cos 60.2^{\text {nd }} \mathrm{M} 1$ for $O C=2 r$ and then A 1 for $r=2$. Note seeing $O C=2 r$ is M1M1. Special Case: If a candidate states an answer of $r=2$ (must be in part (b)) as a guess or from an incorrect method then award SC: M0M0B1. Such a candidate could then go on to score M1A1 in part (c). M1: For "their area of sector - their area of circle", where $r>0$ is ft from their answer to part (b). Allow the method mark if "their area of sector" < "their area of circle". The candidate must show somewhere in their working that they are subtracting the correct way round, even if their answer is negative. Some candidates in part (c) will either use their value of r from part (b) or even introduce a value of r in part (c). You can apply the scheme to award either M0A0 or M1A0 or M1A1 to these candidates. Note: Candidates can get M1 by writing "their part (a) answer $-\pi r^{2 n}$, where the radius of the circle is not substituted. A1: cao - accept exact answer or awrt 6.3 Correct answer only with no working in (c) gets M1A1 Beware: The answer in (c) is the same as the arc length of the pendant	
(b)		
(c)		

