Binomial Expansion (Year 13) - Edexcel Past Exam Questions

1. Use the binomial theorem to expand

$$
\sqrt{ }(4-9 x), \quad|x|<\frac{4}{9},
$$

in ascending powers of x, up to and including the term in x^{3}, simplifying each term.
2. $\mathrm{f}(x)=\frac{3 x^{2}+16}{(1-3 x)(2+x)^{2}}=\frac{A}{(1-3 x)}+\frac{B}{(2+x)}+\frac{C}{(2+x)^{2}},|x|<\frac{1}{3}$.
(a) Find the values of A and C and show that $B=0$.
(b) Hence, or otherwise, find the series expansion of $\mathrm{f}(x)$, in ascending powers of x, up to and including the term in x^{3}. Simplify each term.

Jan 06 Q5
3. $\mathrm{f}(x)=\frac{3 x-1}{(1-2 x)^{2}}, \quad|x|<\frac{1}{2}$.

Given that, for $x \neq \frac{1}{2}, \frac{3 x-1}{(1-2 x)^{2}}=\frac{A}{(1-2 x)}+\frac{B}{(1-2 x)^{2}}$, where A and B are constants,
(a) find the values of A and B.
(b) Hence, or otherwise, find the series expansion of $\mathrm{f}(x)$, in ascending powers of x, up to and including the term in x^{3}, simplifying each term.
4. $\mathrm{f}(x)=(2-5 x)^{-2},|x|<\frac{2}{5}$.

Find the binomial expansion of $\mathrm{f}(x)$, in ascending powers of x, as far as the term in x^{3}, giving each coefficient as a simplified fraction.
5. $\mathrm{f}(x)=(3+2 x)^{-3}, \quad|x|<\frac{3}{2}$.

Find the binomial expansion of $\mathrm{f}(x)$, in ascending powers of x, as far as the term in x^{3}.
Give each coefficient as a simplified fraction.
June 07 Q1
6. (a) Use the binomial theorem to expand

$$
(8-3 x)^{\frac{1}{3}}, \quad|x|<\frac{8}{3},
$$

in ascending powers of x, up to and including the term in x^{3}, giving each term as a simplified fraction.
(b) Use your expansion, with a suitable value of x, to obtain an approximation to $\sqrt[3]{ }(7.7)$. Give your answer to 7 decimal places.

Jan 08 Q2
7. (a) Expand $\frac{1}{\sqrt{ }(4-3 x)}$, where $|x|<\frac{4}{3}$, in ascending powers of x up to and including the term in x^{2}. Simplify each term.
(b) Hence, or otherwise, find the first 3 terms in the expansion of $\frac{x+8}{\sqrt{ }(4-3 x)}$ as a series in ascending powers of x.
8. $\mathrm{f}(x)=\frac{27 x^{2}+32 x+16}{(3 x+2)^{2}(1-x)},|x|<\frac{2}{3}$.

Given that $\mathrm{f}(x)$ can be expressed in the form

$$
\mathrm{f}(x)=\frac{A}{(3 x+2)}+\frac{B}{(3 x+2)^{2}}+\frac{C}{(1-x)},
$$

(a) find the values of B and C and show that $A=0$.
(b) Hence, or otherwise, find the series expansion of $\mathrm{f}(x)$, in ascending powers of x, up to and including the term in x^{2}. Simplify each term.
(c) Find the percentage error made in using the series expansion in part (b) to estimate the value of $f(0.2)$. Give your answer to 2 significant figures.
9. $\mathrm{f}(x)=\frac{1}{\sqrt{ }(4+x)}, \quad|x|<4$.

Find the binomial expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{3}. Give each coefficient as a simplified fraction.
10. (a) Find the binomial expansion of

$$
\begin{equation*}
\sqrt{ }(1-8 x), \quad|x|<\frac{1}{8} \tag{4}
\end{equation*}
$$

in ascending powers of x up to and including the term in x^{3}, simplifying each term.
(b) Show that, when $x=\frac{1}{100}$, the exact value of $\sqrt{ }(1-8 x)$ is $\frac{\sqrt{ } 23}{5}$.
(c) Substitute $x=\frac{1}{100}$ into the binomial expansion in part (a) and hence obtain an approximation to $\sqrt{ } 23$. Give your answer to 5 decimal places.

Jan 10 Q1
11. $\frac{2 x^{2}+5 x-10}{(x-1)(x+2)} \equiv A+\frac{B}{x-1}+\frac{C}{x+2}$.
(a) Find the values of the constants A, B and C.
(4)
(b) Hence, or otherwise, expand $\frac{2 x^{2}+5 x-10}{(x-1)(x+2)}$ in ascending powers of x, as far as the term in x^{2}. Give each coefficient as a simplified fraction.

June 10 Q5
12. (a) Use the binomial theorem to expand

$$
(2-3 x)^{-2}, \quad|x|<\frac{2}{3},
$$

in ascending powers of x, up to and including the term in x^{3}. Give each coefficient as a simplified fraction.

$$
\mathrm{f}(x)=\frac{a+b x}{(2-3 x)^{2}}, \quad|x|<\frac{2}{3}, \quad \text { where } a \text { and } b \text { are constants. }
$$

In the binomial expansion of $\mathrm{f}(x)$, in ascending powers of x, the coefficient of x is 0 and the coefficient of x^{2} is $\frac{9}{16}$.

Find
(b) the value of a and the value of b,
(c) the coefficient of x^{3}, giving your answer as a simplified fraction.

Jan 11 Q5

13.

$$
\mathrm{f}(x)=\frac{1}{\sqrt{ }\left(9+4 x^{2}\right)}, \quad|x|<\frac{3}{2} .
$$

Find the first three non-zero terms of the binomial expansion of $\mathrm{f}(x)$ in ascending powers of x. Give each coefficient as a simplified fraction.

