Modelling with series - Edexcel Past Exam Questions

1. (a) A geometric series has first term a and common ratio r. Prove that the sum of the first n terms of the series is

$$
\begin{equation*}
\frac{a\left(1-r^{n}\right)}{1-r} \tag{4}
\end{equation*}
$$

Mr King will be paid a salary of $£ 35000$ in the year 2005. Mr King’s contract promises a 4% increase in salary every year, the first increase being given in 2006, so that his annual salaries form a geometric sequence.
(b) Find, to the nearest $£ 100$, Mr King's salary in the year 2008.

Mr King will receive a salary each year from 2005 until he retires at the end of 2024.
(c) Find, to the nearest $£ 1000$, the total amount of salary he will receive in the period from 2005 until he retires at the end of 2024.
2. A trading company made a profit of $£ 50000$ in 2006 (Year 1).

A model for future trading predicts that profits will increase year by year in a geometric sequence with common ratio $r, r>1$.

The model therefore predicts that in 2007 (Year 2) a profit of $£ 50000 r$ will be made.
(a) Write down an expression for the predicted profit in Year n.

The model predicts that in Year n, the profit made will exceed $£ 200000$.
(b) Show that $n>\frac{\log 4}{\log r}+1$.
(3)

Using the model with $r=1.09$,
(c) find the year in which the profit made will first exceed $£ 200000$,
(d) find the total of the profits that will be made by the company over the 10 years from 2006 to 2015 inclusive, giving your answer to the nearest $£ 10000$.
3. A car was purchased for $£ 18000$ on 1st January.

On 1st January each following year, the value of the car is 80% of its value on 1st January in the previous year.
(a) Show that the value of the car exactly 3 years after it was purchased is $£ 9216$.

The value of the car falls below $£ 1000$ for the first time n years after it was purchased.
(b) Find the value of n.

An insurance company has a scheme to cover the cost of maintenance of the car. The cost is $£ 200$ for the first year, and for every following year the cost increases by 12% so that for the 3rd year the cost of the scheme is $£ 250.88$.
(c) Find the cost of the scheme for the 5th year, giving your answer to the nearest penny.
(d) Find the total cost of the insurance scheme for the first 15 years.
4. The adult population of a town is 25000 at the end of Year 1.

A model predicts that the adult population of the town will increase by 3% each year, forming a geometric sequence.
(a) Show that the predicted adult population at the end of Year 2 is 25750 .
(b) Write down the common ratio of the geometric sequence.

The model predicts that Year N will be the first year in which the adult population of the town exceeds 40000.
(c) Show that

$$
\begin{equation*}
(N-1) \log 1.03>\log 1.6 \tag{3}
\end{equation*}
$$

(d) Find the value of N.

At the end of each year, each member of the adult population of the town will give $£ 1$ to a charity fund.

Assuming the population model,
(e) find the total amount that will be given to the charity fund for the 10 years from the end of Year 1 to the end of Year 10, giving your answer to the nearest $£ 1000$.

