Implicit Differentiation - Edexcel Past Exam Questions

1. A curve has equation

$$
x^{2}+2 x y-3 y^{2}+16=0 .
$$

Find the coordinates of the points on the curve where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
June 05 Q2
2. A curve C is described by the equation

$$
3 x^{2}+4 y^{2}-2 x+6 x y-5=0
$$

Find an equation of the tangent to C at the point $(1,-2)$, giving your answer in the form $a x+b y$ $+c=0$, where a, b and c are integers.
3. A curve C is described by the equation

$$
3 x^{2}-2 y^{2}+2 x-3 y+5=0 .
$$

Find an equation of the normal to C at the point $(0,1)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
4. A set of curves is given by the equation $\sin x+\cos y=0.5$.
(a) Use implicit differentiation to find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

For $-\pi<x<\pi$ and $-\pi<y<\pi$,
(b) find the coordinates of the points where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.

Jan 07 Q5
5. (a) Given that $y=2^{x}$, and using the result $2^{x}=\mathrm{e}^{x \ln 2}$, or otherwise, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2^{x} \ln 2$.
(b) Find the gradient of the curve with equation $y=2^{\left(x^{2}\right)}$ at the point with coordinates $(2,16)$.
6. A curve is described by the equation

$$
x^{3}-4 y^{2}=12 x y .
$$

(a) Find the coordinates of the two points on the curve where $x=-8$.
(b) Find the gradient of the curve at each of these points.

Jan 08 Q5
7. A curve has equation $3 x^{2}-y^{2}+x y=4$. The points P and Q lie on the curve. The gradient of the tangent to the curve is $\frac{8}{3}$ at P and at Q.
(a) Use implicit differentiation to show that $y-2 x=0$ at P and at Q.
(b) Find the coordinates of P and Q.
8. A curve C has the equation $y^{2}-3 y=x^{3}+8$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Hence find the gradient of C at the point where $y=3$.

Jan 09 Q1
9. The curve C has the equation $y \mathrm{e}^{-2 x}=2 x+y^{2}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

The point P on C has coordinates $(0,1)$.
(b) Find the equation of the normal to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
10. The curve C has equation

$$
\cos 2 x+\cos 3 y=1, \quad-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}, \quad 0 \leq y \leq \frac{\pi}{6} .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

The point P lies on C where $x=\frac{\pi}{6}$.
(b) Find the value of y at P.
(c) Find the equation of the tangent to C at P, giving your answer in the form $a x+b y+c \pi=$ 0 , where a, b and c are integers.
11. A curve C has equation

$$
2^{x}+y^{2}=2 x y .
$$

Find the exact value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point on C with coordinates $(3,2)$.
12. Find the gradient of the curve with equation

$$
\ln y=2 x \ln x, \quad x>0, \quad y>0,
$$

at the point on the curve where $x=2$. Give your answer as an exact value.

