Trigonometric Functions (Sec, cosec \& cot) - Edexcel Past Exam Questions

1. (a) Given that $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$, show that $1+\tan ^{2} \theta \equiv \sec ^{2} \theta$.
(b) Solve, for $0 \leq \theta<360^{\circ}$, the equation

$$
2 \tan ^{2} \theta+\sec \theta=1,
$$

giving your answers to 1 decimal place.
2. (a) Using $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$, show that the $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta \equiv 1$.
(b) Hence, or otherwise, prove that

$$
\begin{equation*}
\operatorname{cosec}^{4} \theta-\cot ^{4} \theta \equiv \operatorname{cosec}^{2} \theta+\cot ^{2} \theta \tag{2}
\end{equation*}
$$

(c) Solve, for $90^{\circ}<\theta<180^{\circ}$,

$$
\begin{equation*}
\operatorname{cosec}^{4} \theta-\cot ^{4} \theta=2-\cot \theta \tag{6}
\end{equation*}
$$

June 06 Q6
3. (i) Prove that

$$
\begin{equation*}
\sec ^{2} x-\operatorname{cosec}^{2} x \equiv \tan ^{2} x-\cot ^{2} x . \tag{3}
\end{equation*}
$$

(ii) Given that

$$
y=\arccos x, \quad-1 \leq x \leq 1 \quad \text { and } \quad 0 \leq y \leq \pi
$$

(a) express $\arcsin x$ in terms of y.
(b) Hence evaluate $\arccos x+\arcsin x$. Give your answer in terms of π.
4. (a) Given that $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$, show that $1+\cot ^{2} \theta \equiv \operatorname{cosec}^{2} \theta$.
(b) Solve, for $0 \leq \theta<180^{\circ}$, the equation

$$
2 \cot ^{2} \theta-9 \operatorname{cosec} \theta=3
$$

giving your answers to 1 decimal place.

5 Find, for $0<x<\pi$, all the solutions of the equation

$$
\operatorname{cosec} x-8 \cos x=0
$$

giving your answers to 2 decimal places.
6. (a) Use the identity $\cos ^{2} \theta+\sin ^{2} \theta=1$ to prove that $\tan ^{2} \theta=\sec ^{2} \theta-1$.
(b) Solve, for $0 \leq \theta<360^{\circ}$, the equation

$$
\begin{equation*}
2 \tan ^{2} \theta+4 \sec \theta+\sec ^{2} \theta=2 \tag{6}
\end{equation*}
$$

