

Trigonometric Functions (Sec, cosec & cot) - Edexcel Past Exam Questions

1. (a) Given that
$$\sin^2 \theta + \cos^2 \theta = 1$$
, show that $1 + \tan^2 \theta = \sec^2 \theta$. (2)

(b) Solve, for $0 \le \theta < 360^{\circ}$, the equation

$$2 \tan^2 \theta + \sec \theta = 1$$
,

giving your answers to 1 decimal place.

June 05 Q1

2. (a) Using
$$\sin^2 \theta + \cos^2 \theta = 1$$
, show that the $\csc^2 \theta - \cot^2 \theta = 1$. (2)

(b) Hence, or otherwise, prove that

$$\csc^4 \theta - \cot^4 \theta = \csc^2 \theta + \cot^2 \theta \tag{2}$$

(c) Solve, for $90^{\circ} < \theta < 180^{\circ}$,

$$\csc^4 \theta - \cot^4 \theta = 2 - \cot \theta. \tag{6}$$

June 06 Q6

3. (i) Prove that

$$\sec^2 x - \csc^2 x \equiv \tan^2 x - \cot^2 x. \tag{3}$$

(ii) Given that

$$y = \arccos x$$
, $-1 \le x \le 1$ and $0 \le y \le \pi$,

(a) express $\arcsin x$ in terms of y.

(2)

(b) Hence evaluate $\arccos x + \arcsin x$. Give your answer in terms of π .

(1)

Jan 07 Q8

4. (a) Given that
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$
, show that $1 + \cot^2 \theta \equiv \csc^2 \theta$. (2)

(b) Solve, for $0 \le \theta < 180^{\circ}$, the equation

$$2 \cot^2 \theta - 9 \csc \theta = 3$$
,

giving your answers to 1 decimal place.

June 08 Q5

5 Find, for $0 < x < \pi$, all the solutions of the equation

$$\csc x - 8\cos x = 0.$$

giving your answers to 2 decimal places.

(5) June 09 Q8(edited)

6. (a) Use the identity $\cos^2 \theta + \sin^2 \theta = 1$ to prove that $\tan^2 \theta = \sec^2 \theta - 1$.

(2)

(b) Solve, for $0 \le \theta < 360^{\circ}$, the equation

$$2 \tan^2 \theta + 4 \sec \theta + \sec^2 \theta = 2. \tag{6}$$

June 09 Q2