Name:

Pure

Mathematics 1

Advanced Subsidiary

Practice Paper M8

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE AS Level Specifications
- There are 12 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

(a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1+a x)^{10}$, where a is a non-zero constant. Give each term in its simplest form.

Given that, in this expansion, the coefficient of x^{3} is double the coefficient of x^{2},
(b) find the value of a.

Question 2

Figure 2
The points $Q(1,3)$ and $R(7,0)$ lie on the line I_{1}, as shown in Figure 2.
The length of $Q R$ is $a \sqrt{ } 5$.
(a) Find the value of a.

The line I_{2} is perpendicular to I_{1}, passes through Q and crosses the y-axis at the point P, as shown in Figure 2. Find
(b) an equation for l_{2},
(c) the coordinates of P,
(d) the area of $\triangle P Q R$.

Question 3

The curve C has equation $y=\frac{3}{x}$ and the line I has equation $y=2 x+5$.
(a) Sketch the graphs of C and I, indicating clearly the coordinates of any intersections with the axes.
(b) Find the coordinates of the points of intersection of C and I.

Question 4

The gradient of a curve C is given by

$$
\frac{d y}{d x}=\frac{\left(x^{2}+3\right)^{2}}{x^{2}}, x \neq 0
$$

(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+6+9 x^{-2}$.

The point $(3,20)$ lies on C.
(b) Find an equation for the curve C in the form $y=\mathrm{f}(x)$.

Question 5

The circle C has centre $(3,1)$ and passes through the point $P(8,3)$.
(a) Find an equation for C.
(b) Find an equation for the tangent to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Question 6

The curve C has equation $y=k x^{3}-x^{2}+x-5$, where k is a constant.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

The point A with x-coordinate ${ }^{-\frac{1}{2}}$ lies on C. The tangent to C at A is parallel to the line with equation $2 y$ $-7 x+1=0$.

Find
(b) the value of k,
(c) the value of the y-coordinate of A.

Question 7

Figure 2
Figure 2 shows a sketch of part of the curve with equation $y=10+8 x+x^{2}-x^{3}$.
The curve has a maximum turning point A.
(a) Using calculus, show that the x-coordinate of A is 2 .

The region R, shown shaded in Figure 2, is bounded by the curve, the y-axis and the line from O to A, where O is the origin.
(b) Using calculus, find the exact area of R.

Question 8

(a) Find, to 3 significant figures, the value of x for which $5^{x}=7$.
(b) Solve the equation $5^{2 x}-12\left(5^{x}\right)+35=0$.

Question 9

Solve, for $0 \leq x<360^{\circ}$,
(a) $\sin \left(x-20^{\circ}\right)=\frac{1}{\sqrt{2}}$,
(b) $\cos 3 x=-\frac{1}{2}$.

Question 10

Figure 1 below shows a triangle $A B C$, where $\overrightarrow{A B}=4 i+6 j$ and $\overrightarrow{A C}=6 i+2 j$

(a) Find $\overrightarrow{B C}$
(b) Calculate the angle BAC
(c) Find the area of the triangle ABC

Question 11

(a) On a coordinate grid, shade the region that satisfies the inequalities

$$
2 y+x<8, y<3 x+6, y>1 \text { and } x>2
$$

(a) Work out the area of the shaded region

Question 12

The point P lies on the curve with equation

$$
y=4 \mathrm{e}^{2 x}
$$

The y-coordinate of P is 8 .
(a) Find, in terms of $\ln 2$, the x-coordinate of P.
(b) Find the equation of the tangent to the curve at the point P in the form $y=a x+b$, where a and b are exact constants to be found

