Name:

Pure

Mathematics 1

Advanced Subsidiary

Practice Paper M7

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE AS Level Specifications
- There are 13 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

(a) By eliminating y from the equations

$$
\begin{gathered}
y=x-4 \\
2 x^{2}-x y=8
\end{gathered}
$$

show that

$$
x^{2}+4 x-8=0
$$

(b) Hence, or otherwise, solve the simultaneous equations

$$
\begin{gathered}
y=x-4 \\
2 x^{2}-x y=8
\end{gathered}
$$

giving your answers in the form $a \pm b \sqrt{3}$, where a and b are integers.

Question 2.

The equation $x^{2}+k x+(k+3)=0$, where k is a constant, has different real roots.
(a) Show that $k^{2}-4 k-12>0$.
(b) Find the set of possible values of k.

Question 3.

Figure 1
Figure 1 shows a sketch of the curve with equation $=y=\frac{3}{x}, x \neq 0$.
(a) On a separate diagram, sketch the curve with equation $y=\frac{3}{x+2}, x \neq-2$, showing the coordinates of any point at which the curve crosses a coordinate axis.
(b) Write down the equations of the asymptotes of the curve in part (a).

Question 4.

The line I_{1} has equation $y=3 x+2$ and the line I_{2} has equation $3 x+2 y-8=0$.
(a) Find the gradient of the line I_{2}.

The point of intersection of l_{1} and l_{2} is P.
(b) Find the coordinates of P.

The lines I_{1} and I_{2} cross the line $y=1$ at the points A and B respectively.
(c) Find the area of triangle $A B P$.

Question 5.

Figure 3
The points A and B lie on a circle with centre P, as shown in Figure 3.
The point A has coordinates $(1,-2)$ and the mid-point M of $A B$ has coordinates $(3,1)$. The line / passes through the points M and P.
(a) Find an equation for I.

Given that the x-coordinate of P is 6 ,
(b) use your answer to part (a) to show that the y-coordinate of P is -1 ,
(c) find an equation for the circle.

Question 6.

$\underline{4}$
The curve C has equation $y=x^{2}(x-6)+x, x>0$.
The points P and Q lie on C and have x-coordinates 1 and 2 respectively.
(a) Show that the length of $P Q$ is $\sqrt{ } 170$.
(b) Show that the tangents to C at P and Q are parallel.
(c) Find an equation for the normal to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Question 7.

Figure 4
Figure 4 shows a solid brick in the shape of a cuboid measuring $2 x \mathrm{~cm}$ by $x \mathrm{~cm}$ by $y \mathrm{~cm}$.
The total surface area of the brick is $600 \mathrm{~cm}^{2}$.
(a) Show that the volume, $V \mathrm{~cm}^{3}$, of the brick is given by

$$
V=200 x-\frac{4 x^{3}}{3}
$$

Given that x can vary,
(b) use calculus to find the maximum value of V, giving your answer to the nearest cm^{3}.
(c) Justify that the value of V you have found is a maximum.

Question 8.

Given that $y=3 x^{2}+4 \sqrt{ } x, x>0$, find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$
(c) $\int y \mathrm{~d} x$,

Question 9.

(a) Find, to 3 significant figures, the value of x for which $8^{x}=0.8$.
(b) Solve the equation

$$
2 \log _{3} x-\log _{3} 7 x=1
$$

Question 10.

The curve C with equation $y=\mathrm{f}(x)$ passes through the point $(5,65)$.
Given that $\mathrm{f}^{\prime}(x)=6 x^{2}-10 x-12$,
(a) use integration to find $f(x)$.
(b) Hence show that $\mathrm{f}(x)=x(2 x+3)(x-4)$.
(c) Sketch C, showing the coordinates of the points where C crosses the x-axis.

Question 11.

Figure 1
Figure 1 shows the triangle $A B C$, with $A B=6 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $C A=5 \mathrm{~cm}$.
(a) Show that $\cos A=\frac{3}{4}$.
(b) Hence, or otherwise, find the exact value of $\sin A$.

Question 12.

(a) Sketch, for $0 \leq x \leq 360^{\circ}$, the graph of $\sin \left(x+30^{\circ}\right)$.
(b) Write down the exact coordinates of the points where the graph meets the coordinate axes.
(c) Solve, for $0 \leq x \leq 360^{\circ}$, the equation

$$
\sin \left(x+30^{0}\right)=0.65
$$

giving your answers in degrees to 2 decimal places.

Question 13.

The temperature, $T^{0} \mathrm{C}$, of a room is given by $T=45 e^{\frac{-t}{6}}+25$, where $t \geq 0$ and t is the time in minutes at the start when measurements began.
(a) Find the rate of at which the temperature T is decreasing at the instant when $t=15$.
(b) Explain why the temperature can never drop to $20^{\circ} \mathrm{C}$.

