Name:

Total Marks:

GCSE (9-1) Grade 8/9 Nth Term of a Quadratic Sequence

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Show all your working out

Information

- The total mark for this paper is 85 .
- The marks for each question are shown in brackets.
- use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed

Advice

- Read each question carefully before you start to answer it
- Attempt every question
- Check your answers if you have time at the end

1. Write down the next two terms in the following sequence

$$
\underbrace{9,9}_{+3}, \underbrace{14}_{+5}, \underbrace{21}_{+7}, \underbrace{30}_{+9}, \underbrace{41}_{+11}
$$

2. Write down the next two terms in the following sequence

3. The nth term of a sequence is

$$
2 n^{2}+3 n-2
$$

Work out the $8^{\text {th }}$ term of the sequence

$$
\begin{aligned}
n=8 \Rightarrow & \Rightarrow 2(8)^{2}+3(8)-2 \\
& =2(64)+24-2 \\
& =128+24-2 \\
& =150
\end{aligned}
$$

4. The nth term of a sequence is

$$
n^{2}+3 n-1
$$

Write down the first 5 terms in the sequence

$$
\begin{aligned}
& 1^{\text {st }} \text { term } \Rightarrow n=1 \Rightarrow(1)^{2}+3(1)-1=3 \\
& 2^{\text {nd }} \text { term } \Rightarrow n=2 \Rightarrow(2)^{2}+3(2)-1=9 \\
& 3^{\text {rd }} \text { term } \Rightarrow n=3 \Rightarrow(3)^{2}+3(3)-1=17 \\
& 4^{\text {in }} \text { term } \Rightarrow n=4 \Rightarrow(4)^{2}+3(4)-1=27 \\
& 5^{\text {tn }} \text { term } \Rightarrow n=5 \Rightarrow(5)^{2}+3(5)-1=39
\end{aligned}
$$

$3,9,17,27,39$
$(2$ marks)
5. Find an expression, in terms of n, for the nth term of the quadratic sequence:

$$
\underbrace{2,3}_{+2} \underbrace{3,}_{+2} \underbrace{6}_{+5} \underbrace{11,18}_{+2} \underbrace{\underbrace{2}_{2}=1 \quad \therefore n^{2}}_{+7}
$$

$$
\begin{array}{lccccc}
n^{2} & 1 & 4 & 9 & 16 & 25 \\
& \downarrow+1 & \downarrow^{-1} & \downarrow^{-3} & \downarrow-5 & \downarrow-7 \\
2 & 3 & 6 & 11 & 18
\end{array}
$$

$$
\begin{aligned}
& G_{N^{+n}}+1,-1,-3,-5,-7 \\
& \text { term }=-2 n+3
\end{aligned}
$$

$$
\mathrm{N}^{\text {th }} \text { term }=-2 n+3
$$

sequence
$n^{2}-2 n+3$
Conadratic sequence $=n^{2}-2 n+3$
6. Find an expression, in terms of n, for the nth term of the quadratic sequence:

$$
\begin{aligned}
& \underbrace{3,10,19}_{+7} \underbrace{19}_{+9} \underbrace{\underbrace{}_{+1} 30,43}_{+2} \underbrace{\underbrace{}_{+13}}_{+2} \\
& n^{2} \\
& \begin{array}{ccccc}
1 & 4 & 9 & 16 & 25 \\
\downarrow+2 & \downarrow+6 & j+10 & \downarrow+14 & \downarrow+18 \\
3 & 10 & 19 & 30 & 43
\end{array} \\
& 2, \frac{6}{+4}, \frac{10}{+4}, \frac{14}{+4}, \frac{18}{+4} \Rightarrow n^{\text {th }} \text { term }=4 n-2 \\
& \therefore n^{+n} \text { term of } \\
& \text { sequence }=n^{2}+4 n-2 \\
& n^{2}+4 n-2 \\
& \text { (4 marks) }
\end{aligned}
$$

7. Find an expression, in terms of n, for the nth term of the quadratic sequence:

$$
\begin{aligned}
& -1 \underbrace{, 0}_{+1} \underbrace{0,}_{+2} \underbrace{3,8}_{+2}, \underbrace{15}_{+2} \\
& \therefore n^{2} \\
& n^{2} \\
& \begin{array}{rrrrr}
1 & 4 & 9 & 16 & 25 \\
-2 \downarrow & -4 \downarrow & -6 \downarrow & -8 \downarrow & -10 \downarrow \\
-1 & 0 & 3 & 8 & 15
\end{array} \\
& -2 \underbrace{,-4}_{-2} \underbrace{-6}_{-2} \underbrace{-8}_{-2},-10 \Rightarrow-2 n+0 \\
& \text {. } N^{+n} \text { term is } n^{2}-2 n
\end{aligned}
$$

(4 marks)
8. Find an expression, in terms of n, for the nth term of the quadratic sequence:

$2 n^{2}$

$$
\begin{aligned}
& -4 \downarrow-4 \varliminf_{-2}^{2} \begin{array}{cccc}
18 & -4 & -4\rfloor & -4 \downarrow \\
4 & 14 & 28 & 46
\end{array} \\
& \therefore N^{+n} \text { term is } 2 n^{2}-4
\end{aligned}
$$

9. Find an expression, in terms of n, for the nth term of the quadratic sequence:

$$
\begin{array}{rrrr}
-n^{2} & -1 & -4 & -9 \\
+7 \coprod_{1} & +14 \int_{1}+21 & -16 & -25 \\
6 & 10 & 12 & 12
\end{array}
$$

$$
\underbrace{7,14}_{17} \underbrace{21}_{77} \underbrace{128}_{+7} \underbrace{85}_{+7} \Rightarrow 7 n-0
$$

$\therefore N^{+n}$ term is $-n^{2}+7 n$
$-n^{2}+7 n$
(4 marks)
10. Find an expression, in terms of n, for the nth term of the quadratic sequence:

$0.5 n^{2}$

$$
\begin{array}{cccc}
0.5 & 2 & 4.5 & 8 \\
-2.5 \downarrow & -3 \downarrow & -3.5 \downarrow & -4 \downarrow \\
-2 & -1 & 1 & 4
\end{array}
$$

$$
-2 . \underbrace{5,-3}_{-0.5} \underbrace{-3.5}_{-0.5} \underbrace{,-4}_{-0.5} \Rightarrow-0.5 n-2
$$

$\therefore N^{\text {th }}$ term is $0.5 n^{2}-0.5 n-2$

(4 marks)
11. Here are the first 6 terms of a sequence.

$$
\begin{array}{lllll}
9 & 4 & -5 & -18 & -35
\end{array}
$$

(a) Find an expression, in terms of n, for the nth term of this sequence.

$-2 n^{2}$

$$
\therefore N^{+n} \text { term is }-2 n^{2}+n+10
$$

$-2 n^{2}+n+10$
$(4$ marks $)$
(b) Hence find the term that has value - 1215

$$
\begin{aligned}
& -2 n^{2}+n+10=-1215
\end{aligned}
$$

$$
\begin{align*}
& n=25 \text { or }-24.5 \tag{2marks}\\
& \text { F Invalid }
\end{align*}
$$

$$
\begin{aligned}
& \begin{array}{ccccc}
-2 & -8 & -18 & -32 & -50 \\
+14 & +12 \downarrow & +13 \downarrow & +14 \downarrow & +15 \downarrow \\
9 & 4 & -5 & -18 & -35
\end{array} \\
& { }^{11,12} \underbrace{2,13}_{+1} \underbrace{14,15}_{+1} \underbrace{}_{+1} \Rightarrow n+10
\end{aligned}
$$

12. Here are the first 5 terms of a sequence.

$$
\begin{array}{lllll}
7 & 16 & 29 & 46 & 67
\end{array}
$$

(a) Find an expression, in terms of n, for the nth term of this sequence.

$2 n^{2}$

$$
\begin{aligned}
& \begin{array}{ccccc}
2 & 8 & 18 & 32 & 50 \\
+5 \downarrow & +8 \downarrow & +11 & +44 & +17 \downarrow \\
7 & 16 & 29 & 46 & 67
\end{array} \\
& \underbrace{5,8,11}_{+3} \underbrace{8}_{+3} \underbrace{}_{+3} 14,17 \Rightarrow 3 n-2
\end{aligned}
$$

$\therefore N^{+n}$ term is $2 n^{2}+3 n+2$

$$
\begin{array}{r}
2 n^{2}+3 n+2 \\
(4 \text { marks })
\end{array}
$$

(b) Hence find the term that has value 862

$$
\begin{aligned}
& 2 n^{2}+3 n+2=862 \\
& 2 n^{2}+3 n-\frac{36}{b}=0 \\
& \text { Using } n=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& n=\frac{-3 \pm \sqrt{3^{2}-4(2)(-86)}}{2(2)} \\
& n=20 \text { or }-21.5 \\
& \therefore 20^{\text {th }} \text { term } \\
& \quad 20^{+h} \\
& \text { (2 malI) }
\end{aligned}
$$

13. Here are the first 5 terms of a sequence.

$$
\begin{aligned}
& n^{2}+3 n-1=161 \\
& n^{2}+3 n-162=0 \\
& \rightarrow a=1 \quad \rightarrow b=3 \quad c=162
\end{aligned}
$$

Claire says that 161 is a term of this sequence
(a) Is Clairecorrect? Give a reason for your answer

$$
n=\frac{-3 \pm \sqrt{3^{2}-4(1)(-162)}}{2(1)}
$$

$$
\begin{array}{rrrr}
n^{2} & \begin{array}{r}
1 \\
+2 \\
3
\end{array}+5 \downarrow & 9 & 16 \\
9 & 25 & 25 & 27 \\
\hline & +14 \downarrow \\
39
\end{array}
$$

$$
n=11.31 \ldots \text { or } n=-14.31 \ldots
$$

$$
\text { Since } n \text { is } N \text { OT A WHale }
$$

NUMBER, tharfore

$$
161 \text { is not a term in }
$$

$$
\therefore N^{+n} \text { term }=n^{2}+3 n-1
$$

this sequence
(4 marks)

Rob says that all the terms in the sequence are odd numbers
(b) Is Rob correct? Give a reason for your answer.

$$
\begin{aligned}
& \text { Rob is correct as all numbers are } \\
& \text { odd }
\end{aligned}
$$

$$
3,9,17,27,39,53,69,87,107,129 \ldots
$$

14. Here are some patterns made from square slabs.

2

18
(a) Write down an expression, in terms of n, for the nth term of this sequence.

$$
\therefore N^{+n} \text { term is } 2 n^{2}
$$

$2 n^{2}$
(b) Jane says that 75 is a term in the quadratic sequence. Is Jane correct? Give a reason for your answer.

```
\(2 n^{2}=75\)
    \(n=\sqrt{\frac{75}{2}}\)
    \(n=6.12\)
```


(2 marks)
15. Here are some patterns made from tiles.

4

7

12

Find an expression, in terms of n, for the nth term of this sequence.

$$
\begin{gathered}
n^{2} \begin{array}{c}
1 \\
+3 \\
\downarrow_{1}+3 \\
4
\end{array} \frac{9}{7}+3 \downarrow \\
\therefore N^{+n} \text { term is } n^{2}+3
\end{gathered}
$$

$$
n^{2}+3
$$

16. Here are some patterns made from cubes.

4

7

Find an expression, in terms of n, for the nth term of this sequence.

$$
\begin{array}{lccc}
n^{2} & 1 & 4 & 9 \\
& \vdots+3 & \downarrow+3 & \underset{7}{1+3} \\
4 & 7 & 12 \\
& \therefore N^{\text {th }} & \text { term is } & n^{2}+3
\end{array}
$$

\qquad
17. Here are some patterns made from cubes.

(a) Work out the number of cubes needed to make the next pattern.

\qquad
(b) Find an expression, in terms of n, for the nth term of this sequence.

$$
\begin{array}{ll}
L_{\text {in }}{ }^{4}, 16,36,64 \\
-3 \downarrow-17 \downarrow,-24 \downarrow \\
1,6,19,40
\end{array} \quad \therefore N^{\text {th }} \text { term }=4 n^{2}+7 n-4
$$

18. Here is a sequence of patterns made from centimetre squares.

Find the number of centimetre squares in the 100th pattern.

$$
\begin{aligned}
& \underbrace{1}_{+1} \underbrace{3}_{+3} \underbrace{6}_{+1} \underbrace{10}_{+1} 15 \\
& \frac{1}{2} n^{2} \\
& \begin{array}{lllll}
0.5 & 2 & 4.5 & 8 & 12.5
\end{array} \\
& \begin{array}{rrrr}
+0.5 \downarrow & +1 \downarrow & +0.5 \downarrow & +2 \downarrow \\
1 & 3 & 6 & 10
\end{array} \quad 15 \\
& \underbrace{0.5,1}_{+0.5} \underbrace{, 1.5}_{+.05}, \underbrace{, 2,2.5}_{+0.5} \underbrace{1}_{+0.5} \Rightarrow 0.5 n-0 \\
& \therefore N^{+n} \text { term }=\frac{1}{2} n^{2}+\frac{1}{2} n \\
& =0.5 n^{2}+0.5 n
\end{aligned}
$$

$100^{\text {th }}$ pattern $\Rightarrow n=100$

$$
\begin{array}{r}
\therefore 0.5(100)^{2}+0.5(100)=5050 \\
\frac{1}{2} n^{2}+\frac{1}{2} n
\end{array}
$$

19. Here is a sequence of patterns made from centimetre squares.

13

Find an expression in terms of n for the number of centimetre squares in the nth pattern.

$$
\begin{array}{rrrr}
2 n^{2} & 2 & 8 & 18 \\
-1 & -3 \downarrow & -51 & -7 \downarrow \\
1 & 5 & 13 & 25 \\
-1, & -3 & \underbrace{}_{-2}, \underbrace{}_{-2},-7
\end{array}
$$

20. The diagram shows the first 10 sides of a spiral pattern. It also gives the lengths, in cm , of the first 5 sides.

The lengths, in cm , of the sides of the spiral form a sequence.
Find an expression in terms of n for the length, in cm , of the nth side.

$$
\begin{array}{r}
\frac{1}{2} n^{2} \frac{1}{2}, 2, \frac{9}{2}, 8, \frac{25}{2} \\
+1 \downarrow+1, \\
1.5,
\end{array}+5,5.5,9,13.5 \Rightarrow+1
$$

$\therefore N^{+n}$ term $=\frac{1}{2} n^{2}+1$
$\frac{1}{2} n^{2}+1$

