

t

Parametric Differentiation - Edexcel Past Exam Questions MARK SCHEME

Question 1: June 05 Q6

(a) $\frac{dx}{dt} = -2\csc^2 t, \frac{dy}{dt} = 4\sin t \cos t$ both	M1 A1	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2\sin t\cos t}{\csc^2 t} \left(= -2\sin^3 t\cos t\right)$	M1 A1	
(b) At $t = \frac{\pi}{4}$, $x = 2$, $y = 1$ both x and y	B1	(4)
Substitutes $t = \frac{\pi}{4}$ into an attempt at $\frac{dy}{dx}$ to obtain gradient $\left(-\frac{1}{2}\right)$	M1	
Equation of tangent is $y-1 = -\frac{1}{2}(x-2)$	M1 A1	
Accept $x + 2y = 4$ or any correct equivalent		(4)
(c) Uses $1 + \cot^2 t = \csc^2 t$, or equivalent, to eliminate t	M1	
$1 + \left(\frac{x}{2}\right)^2 = \frac{2}{y}$ correctly eliminates t	A1	
$y = \frac{8}{4 + x^2}$ cao	A1	
The domain is $x \dots 0$	B1	(4) [12]
An alternative in (c)		
$\sin t = \left(\frac{y}{2}\right)^{\frac{1}{2}}; \ \cos t = \frac{x}{2}\sin t = \frac{x}{2}\left(\frac{y}{2}\right)^{\frac{1}{2}}$		
$\sin^2 t + \cos^2 t = 1 \implies \frac{y}{2} + \frac{x^2}{4} \times \frac{y}{2} = 1$	M1 A1	
Leading to $y = \frac{8}{4 + x^2}$	A1	

Question 2: June 06 Q4

Question Number	Scheme		Marks
(a)	$x = \sin t$, $y = \sin(t + \frac{\pi}{6})$		
	$\frac{dx}{dt} = \cos t$, $\frac{dy}{dt} = \cos\left(t + \frac{\pi}{6}\right)$	Attempt to differentiate both x and y wrt t to give two terms in cos	M1
	dt dt (Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	When $t = \frac{\pi}{6}$,	Divides in correct way and substitutes for t to give any of the	
	$\frac{dy}{dx} = \frac{\cos(\frac{x}{6} + \frac{x}{6})}{\cos(\frac{x}{6})} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58$	four underlined oe: Ignore the double negative if	A1
	dx $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} = \sqrt{3}$	candidate has differentiated sin → -cos	
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
		Finding an equation of a tangent with their point and their tangent	
	T : $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (x - \frac{1}{2})$	gradient or finds c and uses y = (their gradient)x + "c".	dM1
		Correct <u>EXACT</u> equation of <u>tangent</u> oe.	<u>A1</u> oe
	Or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(\frac{1}{2} \right) + C \implies C = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$		
	or T: $\left[\underline{y = \frac{\sqrt{3}}{3}x + \frac{\sqrt{3}}{3}} \right]$		
			[6]
(b)	$y = \sin\left(t + \frac{\pi}{6}\right) = \sin t \cos \frac{\pi}{6} + \cos t \sin \frac{\pi}{6}$	Use of compound angle formula for sine.	M1
	Nb: $\sin^2 t + \cos^2 t \equiv 1 \implies \cos^2 t \equiv 1 - \sin^2 t$		
	$\therefore x = sint gives cost = \sqrt{(1-x^2)}$	Use of trig identity to find $\cos t$ in terms of x or $\cos^2 t$ in terms of x.	M1
	$\therefore y = \frac{\sqrt{3}}{2}\sin t + \frac{1}{2}\cos t$		
		Substitutes for sint, cos∄, cost and sin∄ to	A1 cso
	gives $y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{(1-x^2)}$ AG	give y in terms of x.	
			[3]
			9 marks

Question Number	Scheme		Marks
Aliter (a)	$x = sint$, $y = sin(t + \frac{\pi}{6}) = sint cos \frac{\pi}{6} + cost sin \frac{\pi}{6}$	(Do not give this for part (b))	
Way 2		Attempt to differentiate x and y wrt t to give $\frac{dx}{dt}$ in terms of cos and $\frac{dy}{dt}$ in the form ±a cost ± b sint	M1
	$\frac{dx}{dt} = \cos t, \frac{dy}{dt} = \cos t \cos \frac{\pi}{\theta} - \sin t \sin \frac{\pi}{\theta}$	Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	When $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{\cos \frac{\pi}{6} \cos \frac{\pi}{6} - \sin \frac{\pi}{6} \sin \frac{\pi}{6}}{\cos \left(\frac{\pi}{6}\right)}$ $= \frac{\frac{3}{4} - \frac{1}{4}}{\frac{\sqrt{3}}{2}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58$	Divides in correct way and substitutes for t to give any of the four underlined oe:	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	The point $\frac{\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)}{\operatorname{or}\left(\frac{1}{2}, \operatorname{awrt} 0.87\right)}$	B1
	T : $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(x - \frac{1}{2} \right)$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses y = (their gradient)x + "c". Correct EXACT equation of <u>tangent</u> oe.	dM1 <u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(\frac{1}{2} \right) + C \implies C = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$		
	or T: $\left[\underline{y = \frac{\sqrt{3}}{3}x + \frac{\sqrt{3}}{3}} \right]$		[6]

Question Number	Scheme		Marks
Aliter	13 t (c 2)		
(a) Way 3	$y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{(1-x^2)}$ $\frac{dy}{dx} = \frac{\sqrt{3}}{2} + \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(1-x^2\right)^{-\frac{1}{2}}(-2x)$	Attempt to differentiate two terms using the chain rule for the second term. Correct $\frac{dy}{dx}$	M1 A1
	$\frac{dy}{dx} = \frac{\sqrt{3}}{2} + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(1 - (0.5)^2\right)^{-\frac{1}{2}} \left(-2(0.5)\right) = \frac{1}{\sqrt{3}}$	Correct substitution of $x = \frac{1}{2}$ into a correct $\frac{dy}{dx}$	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	T : $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(x - \frac{1}{2} \right)$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses y = (their gradient)x + "c". Correct <u>EXACT</u> equation of <u>tangent</u> oe.	dM1 <u>A1</u> oe
(b) Way 2	x = sint gives y = $\frac{\sqrt{3}}{2}$ sint + $\frac{1}{2}\sqrt{(1 - \sin^2 t)}$ Nb: sin ² t + cos ² t = 1 \Rightarrow cos ² t = 1 - sin ² t	Substitutes x = sint into the equation give in y.	M1
	$\cos t = \sqrt{\left(1 - \sin^2 t\right)}$	Use of trig identity to deduce that $\cos t = \sqrt{(1 - \sin^2 t)}$.	M1
	gives $y = \frac{\sqrt{3}}{2} \sin t + \frac{1}{2} \cos t$ Hence $y = \sin t \cos \frac{\pi}{6} + \cos t \sin \frac{\pi}{6} = \sin(t + \frac{\pi}{6})$	Using the compound angle formula to prove $y = sin(t + \frac{\pi}{6})$	A1 cso [3] 9 marks

Question 3: Jan 07 Q3

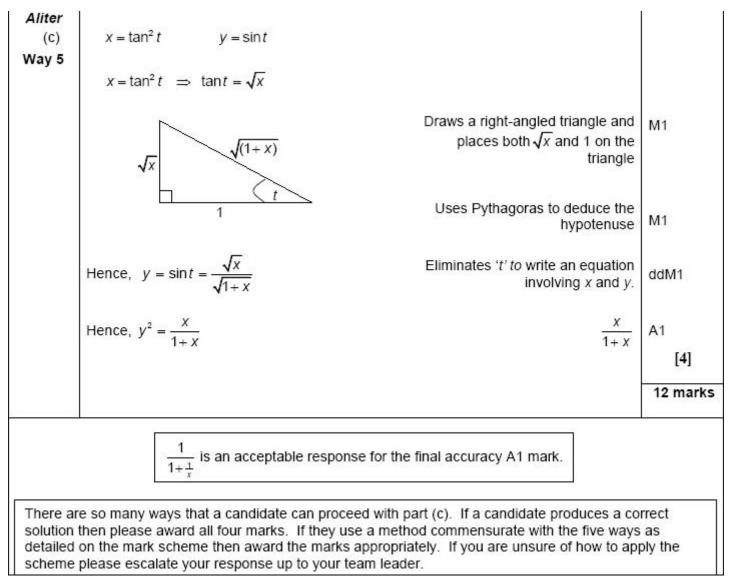
Question Number	Scheme		Marks
(a)	$x = 7 \cos t - \cos 7t$, $y = 7 \sin t - \sin 7t$,		
	$\frac{dx}{dt} = -7\sin t + 7\sin 7t, \frac{dy}{dt} = 7\cos t - 7\cos 7t$	Attempt to differentiate x and y with respect to t to give $\frac{dx}{dt}$ in the form $\pm A \sin t \pm B \sin 7t$ $\frac{dy}{dt}$ in the form $\pm C \cos t \pm D \cos 7t$ Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	M1 A1
	$\therefore \frac{dy}{dx} = \frac{7\cos t - 7\cos 7t}{-7\sin t + 7\sin 7t}$	Candidate's $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	B1 √ [3]
(b)	When $t = \frac{\pi}{6}$, $m(\mathbf{T}) = \frac{dy}{dx} = \frac{7\cos\frac{\pi}{6} - 7\cos\frac{7\pi}{6}}{-7\sin\frac{\pi}{6} + 7\sin\frac{7\pi}{6}}$;	Substitutes $t = \frac{\pi}{6}$ or 30° into their $\frac{dy}{dx}$ expression;	М1
	$=\frac{\frac{7\sqrt{3}}{2} - \left(-\frac{7\sqrt{3}}{2}\right)}{\frac{-\frac{7}{2} - \frac{7}{2}}{2}} = \frac{7\sqrt{3}}{-\frac{7}{2}} = -\frac{\sqrt{3}}{-\frac{7}{2}} = \underline{-\sqrt{3}} = \underline{-\sqrt{3}}$	to give any of the four underlined expressions oe (must be correct solution only)	A1 cso
	Hence m(N) = $\frac{-1}{-\sqrt{3}}$ or $\frac{1}{\sqrt{3}}$ = awrt 0.58	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√oe.
	When $t = \frac{\pi}{6}$, $x = 7\cos\frac{\pi}{6} - \cos\frac{7\pi}{6} = \frac{7\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$ $y = 7\sin\frac{\pi}{6} - \sin\frac{7\pi}{6} = \frac{7}{2} - \left(-\frac{1}{2}\right) = \frac{8}{2} = 4$	The point $(4\sqrt{3}, 4)$ or $(awrt 6.9, 4)$	B1
	N: $y - 4 = \frac{1}{\sqrt{3}} (x - 4\sqrt{3})$	Finding an equation of a normal with their point and their normal gradient or finds c by using y = (their gradient)x + "c".	М1
	N: $\underline{y = \frac{1}{\sqrt{3}}x}$ or $\underline{y = \frac{\sqrt{3}}{3}x}$ or $\underline{3y = \sqrt{3}x}$	Correct simplified EXACT equation of <u>normal</u> . This is dependent on candidate using correct $(4\sqrt{3}, 4)$	<u>A1</u> oe
	or $4 = \frac{1}{\sqrt{3}} (4\sqrt{3}) + c \implies c = 4 - 4 = 0$		
	Hence N: $\underline{y = \frac{1}{\sqrt{3}}x}$ or $\underline{y = \frac{\sqrt{3}}{3}x}$ or $\underline{3y = \sqrt{3}x}$		
			[6] 9 marks

Question 4: June 07 Q6

Question Number	Scheme	Marks
(a)	$x = \tan^2 t$, $y = \sin t$	
	$\frac{dx}{dt} = 2(\tan t)\sec^2 t$, $\frac{dy}{dt} = \cos t$ Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	B1
	$\therefore \frac{dy}{dx} = \frac{\cos t}{2\tan t \sec^2 t} \left(=\frac{\cos^4 t}{2\sin t}\right)$ $\frac{\pm \cos t}{\tan t \sec^2 t} \left(=\frac{\cos^4 t}{2\sin t}\right)$	M1 A1√ [3]
(b)	When $t = \frac{\pi}{4}$, $x = 1$, $y = \frac{1}{\sqrt{2}}$ (need values) The point $(1, \frac{1}{\sqrt{2}})$ or $(1, \text{ awrt } 0.71)$ These coordinates can be implied. $(y = \sin(\frac{\pi}{4}) \text{ is not sufficient for B1})$	B1, B1
0 0	When $t = \frac{\pi}{4}$, $m(\mathbf{T}) = \frac{dy}{dx} = \frac{\cos \frac{\pi}{4}}{2 \tan \frac{\pi}{4} \sec^2 \frac{\pi}{4}}$	
	$= \frac{\frac{1}{\sqrt{2}}}{2.(1)\left(\frac{1}{\sqrt{2}}\right)^2} = \frac{\frac{1}{\sqrt{2}}}{2.(1)\left(\frac{1}{\frac{1}{2}}\right)} = \frac{\frac{1}{\sqrt{2}}}{2.(1)(2)} = \frac{1}{4\sqrt{2}} = \frac{\sqrt{2}}{\frac{8}{2}}$ any of the five underlined expressions or awrt 0.18	B1 aef
	T: $y - \frac{1}{\sqrt{2}} = \frac{1}{4\sqrt{2}}(x-1)$ Finding an equation of a tangent with <i>their point</i> and <i>their tangent</i> <i>gradient</i> or finds <i>c</i> by using $y = (\underline{\text{their gradient}})x + "\underline{c}"$.	M1√ aef
/	T: $y = \frac{1}{4\sqrt{2}} X + \frac{3}{4\sqrt{2}}$ or $y = \frac{\sqrt{2}}{8} X + \frac{3\sqrt{2}}{8}$ Correct simplified EXACT equation of <u>tangent</u>	A1 aef cso
	or $\frac{1}{\sqrt{2}} = \frac{1}{4\sqrt{2}}(1) + c \implies c = \frac{1}{\sqrt{2}} - \frac{1}{4\sqrt{2}} = \frac{3}{4\sqrt{2}}$ Hence T : $y = \frac{1}{4\sqrt{2}}x + \frac{3}{4\sqrt{2}}$ or $y = \frac{\sqrt{2}}{8}x + \frac{3\sqrt{2}}{8}$	
	$\frac{y - 4\sqrt{2} + 4\sqrt{2}}{2} \text{or} \frac{y - 8 + 1 + 8}{2}$	[5]
	A candidate who incorrectly differentiates $\tan^2 t$ to give $\frac{dx}{dt} = 2\sec^2 t$ or $\frac{dx}{dt} = \sec^4 t$ is then able to fluke the correct answer in part (b). Such candidates can potentially get: (a) B0M1A1 $$ (b) B1B1B1M1A0 cso . Note: cso means "correct solution only". Note : part (a) not fully correct implies candidate can achieve a maximum of 4 out of 5 marks in part (b).	

	$x = \tan^2 t = \frac{\sin^2 t}{\cos^2 t} \qquad \qquad y = \sin t$		
Way 1	$x = \frac{\sin^2 t}{1 - \sin^2 t}$	$Uses\cos^2 t = 1 - \sin^2 t$	M1
	$x = \frac{y^2}{1 - y^2}$ $x(1 - y^2) = y^2 \implies x - xy^2 = y^2$ $x = y^2 + xy^2 \implies x = y^2(1 + x)$	Eliminates 't' to write an equation involving x and y.	M1
	$x(1-y^2) = y^2 \implies x - xy^2 = y^2$		
	$x = y^2 + xy^2 \implies x = y^2(1+x)$	Rearranging and factorising with an attempt to make y^2 the subject.	ddM1
	$y^2 = \frac{x}{1+x}$	$\frac{x}{1+x}$	
Aliter (C)	$1 + \cot^2 t = \cos \sec^2 t$	Uses $1 + \cot^2 t = \cos^2 t$	[4] M1
Way 2	$= \frac{1}{\sin^2 t}$	Uses $\cos ec^2 t = \frac{1}{\sin^2 t}$	- 20430)
	Hence, $1 + \frac{1}{x} = \frac{1}{y^2}$	Eliminates 't' to write an equation involving x and y.	ddM1
	Hence, $y^2 = 1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	$1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	A1 [4]
	$\frac{1}{1+\frac{1}{x}}$ is an acceptable response for the	e final accuracy A1 mark.	

Aliter (C)	$x = \tan^2 t$ $y = \sin t$		
Way 3	$1 + \tan^2 t = \sec^2 t$	Uses $1 + \tan^2 t = \sec^2 t$	M1
	$=\frac{1}{\cos^2 t}$	Uses $\sec^2 t = \frac{1}{\cos^2 t}$	M1
	$=\frac{1}{1-\sin^2 t}$		
	Hence, $1+x = \frac{1}{1-y^2}$	Eliminates 't' to write an equation involving x and y.	ddM1
	Hence, $y^2 = 1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	$1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	A1
Aliter			[4]
(C)	$y^2 = \sin^2 t = 1 - \cos^2 t$	Uses $\sin^2 t = 1 - \cos^2 t$	M1
Way 4	$= 1 - \frac{1}{\sec^2 t}$	Uses $\cos^2 t = \frac{1}{\sec^2 t}$	M1
	$= 1 - \frac{1}{(1 + \tan^2 t)}$	then uses $\sec^2 t = 1 + \tan^2 t$	ddM1
	Hence, $y^2 = 1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	$1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	A1 [4]
3	$\frac{1}{1+\frac{1}{x}}$ is an acceptable response for the final	accuracy A1 mark.	



Takes out brackets.	Writing down $\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} + \frac{1}{(t+2)}$ means first M1A0 in (b).
	Writing down $\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} - \frac{1}{(t+2)}$ means first M1A1 in (b).

Question 5: Jan 09 Q7

Question Number	Scheme		Marks
(a) (b)	At A, $x = -1 + 8 = 7$ & $y = (-1)^2 = 1 \implies A(7, 1)$ $x = t^3 - 8t$, $y = t^2$,	A(7,1)	B1 (
	$\frac{dx}{dt} = 3t^2 - 8, \frac{dy}{dt} = 2t$ $\therefore \frac{dy}{dx} = \frac{2t}{3t^2 - 8}$ $2(-1) \qquad -2 \qquad -2 \qquad 2$	Their $\frac{dy}{dt}$ divided by their $\frac{dy}{dt}$ Correct $\frac{dy}{dt}$	M1 A1
	At A, $m(T) = \frac{2(-1)}{3(-1)^2 - 8} = \frac{-2}{3-8} = \frac{-2}{-5} = \frac{2}{5}$ T: $y - (\text{their 1}) = m_T (x - (\text{their 7}))$ or $1 = \frac{2}{5}(7) + c \implies c = 1 - \frac{14}{5} = -\frac{9}{5}$	Substitutes for <i>t</i> to give any of the four underlined oe: Finding an equation of a tangent with their point and their tangent gradient or finds c and uses y = (their gradient)x + "c".	dM1
(c)	Hence T : $y = \frac{2}{5}x - \frac{9}{5}$ gives T : $2x - 5y - 9 = 0$ AG $2(t^3 - 8t) - 5t^2 - 9 = 0$	$\frac{2x-5y-9=0}{5}$ Substitution of both $x = t^3 - 8t$ and $y = t^3$ into T	A1 cs/ (M1
	$2t^{3} - 5t^{2} - 16t - 9 = 0$ (t+1){(2t^{2} - 7t - 9) = 0} (t+1){(t+1)(2t - 9) = 0}	A realisation that $(t+1)$ is a factor.	dM1
	$\{t = -1 \text{ (at } A)\}\ t = \frac{9}{2} \text{ at } B$ $x = \left(\frac{9}{2}\right)^2 - 8\left(\frac{9}{2}\right) = \frac{729}{8} - 36 = \frac{441}{8} = 55.125 \text{ or awrt } 55.1$ $y = \left(\frac{9}{2}\right)^2 = \frac{31}{4} = 20.25 \text{ or awrt } 20.3$ Hence $B\left(\frac{441}{8}, \frac{81}{4}\right)$	$t = \frac{9}{2}$ Candidate uses their value of t to find either the x or y coordinate One of either x or y correct. Both x and y correct. awrt	A1 ddM1 A1 A1 (
	Hence $B(\frac{q+1}{3}, \frac{a+1}{4})$	awrt	

Question 6: June 09 Q5

	$\frac{\mathrm{d}x}{\mathrm{d}t} = -4\sin 2t$, $\frac{\mathrm{d}y}{\mathrm{d}t} = 6\cos t$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{6\cos t}{4\sin 2t} \left(=-\frac{3}{4\sin t}\right)$		B1, B1 W1
	$m = -\frac{3}{4 \times \frac{\sqrt{3}}{2}} = -\frac{\sqrt{3}}{2} \qquad \text{accept equivalent}$	nts, awrt -0.87	A1 (4
Use of	$\cos 2t = 1 - 2\sin^2 t$ $\cos 2t = \frac{x}{2}, \ \sin t = \frac{y}{2}$	u L	W1
	$\frac{x}{2} = 1 - 2\left(\frac{y}{6}\right)^2$		W1
Leading to	$y = \sqrt{(18 - 9x)} (= 3\sqrt{(2 - x)})$) cao	A1
	$-2 \le x \le 2$	<i>k</i> = 2	B1 (-
	$0 \le f(x) \le 6$ either $0 \le f(x)$	c) or $f(x) \le 6$	B1
			B1 (3
			[1
lternatives to (a) w	here the parameter is eliminated		
	$y = (18 - 9x)^{\frac{1}{2}}$		
	$\frac{dy}{dx} = \frac{1}{2} (18 - 9x)^{\frac{1}{2}} \times (-9)$	в	1
	At $t = \frac{\pi}{3}$, $x = \cos \frac{2\pi}{3} = -1$	В	1
		N	A1 A1 (4
)	$y^2 = 18 - 9x$		
	$2y\frac{dy}{dx} = -9$	B	1
	At $t = \frac{\pi}{3}$, $y = 6\sin\frac{\pi}{3} = 3\sqrt{3}$	В	1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{9}{2} = -\frac{\sqrt{3}}{2}$	N	1 A1 (4
	Use of Leading to	Use of $\cos 2t = 1 - 2\sin^{2} t$ $\cos 2t = \frac{x}{2}, \sin t = \frac{y}{6}$ $\frac{x}{2} = 1 - 2\left(\frac{y}{6}\right)^{2}$ Leading to $y = \sqrt{(18 - 9x)} (= 3\sqrt{(2 - x)})$ $-2 \le x \le 2$ $0 \le f(x) \le 6 \text{either } 0 \le f(x)$ Fully correct. Accept 0 thermatives to (a) where the parameter is eliminated $y = (18 - 9x)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2}(18 - 9x)^{-\frac{1}{2}} \times (-9)$ At $t = \frac{\pi}{3}, x = \cos \frac{2\pi}{3} = -1$ $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{\sqrt{(27)}} \times -9 = -\frac{\sqrt{3}}{2}$ $y^{2} = 18 - 9x$ $2y \frac{dy}{dx} = -9$	Use of $\cos 2t = 1 - 2\sin^2 t$ $\cos 2t = \frac{x}{2}, \sin t = \frac{y}{6}$ $\frac{x}{2} = 1 - 2\left(\frac{y}{6}\right)^2$ Leading to $y = \sqrt{(18 - 9x)} (= 3\sqrt{(2 - x)})$ cao $-2 \le x \le 2$ $k = 2$ $0 \le f(x) \le 6$ either $0 \le f(x)$ or $f(x) \le 6$ Fully correct. Accept $0 \le y \le 6$, $[0, 6]$ thermatives to (a) where the parameter is eliminated $y = (18 - 9x)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2}(18 - 9x)^{\frac{1}{2}} \times (-9)$ At $t = \frac{\pi}{3}, x = \cos \frac{2\pi}{3} = -1$ $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{\sqrt{(27)}} \times -9 = -\frac{\sqrt{3}}{2}$ $y^2 = 18 - 9x$ $2y \frac{dy}{dx} = -9$ At $t = \frac{\pi}{3}, y = 6\sin \frac{\pi}{3} = 3\sqrt{3}$

Question 7: June 10 Q4

Question Number	Scheme	Marks
	(a) $\frac{dx}{dt} = 2\sin t \cos t, \ \frac{dy}{dt} = 2\sec^2 t$	B1 B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sec^2 t}{\sin t \cos t} \left(= \frac{1}{\sin t \cos^3 t} \right) \qquad \text{or equivalent}$	M1 A1 (4)
	(b) At $t = \frac{\pi}{3}$, $x = \frac{3}{4}$, $y = 2\sqrt{3}$	B1
	$\frac{dy}{dx} = \frac{\sec^2 \frac{\pi}{3}}{\sin \frac{\pi}{3} \cos \frac{\pi}{3}} = \frac{16}{\sqrt{3}}$	M1 A1
	$y - 2\sqrt{3} = \frac{16}{\sqrt{3}} \left(x - \frac{3}{4} \right)$	М1
	$y = 0 \implies x = \frac{3}{8}$	M1 A1 (6)
		[10]

Question 8: Jan 11 Q6

Question Number (a)	Scheme	Marks	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t}, \frac{\mathrm{d}y}{\mathrm{d}t} = 2t$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2t^2$	M1 A1	
	Using $mm' = -1$, at $t = 3$		
	$m' = -\frac{1}{18}$	M1 A1	
	$y-7 = -\frac{1}{18}(x-\ln 3)$	M1 A1 (6)	
(b)	$x = \ln t \implies t = e^x$	B1	
	$y = e^{2x} - 2$	M1 A1 (3)	

Question 9: June 11 Q7

Question Number	Scheme		Marks		
	(a) $\tan \theta = \sqrt{3} \text{ or } \sin \theta = \frac{\sqrt{3}}{2}$			M1	
	$\theta = \frac{\pi}{3}$		awrt 1.05	A1	(2)
	(b) $\frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec^2 \theta, \ \frac{\mathrm{d}y}{\mathrm{d}\theta}$				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos\theta}{\sec^2\theta} \left(= e^{-\frac{1}{2}\theta}\right)$	$\cos^3 \theta$		M1 A1	
	At P , $m = \cos^3\left(\frac{\pi}{3}\right) = \frac{1}{3}$	1	Can be implied	A1	
	Using $mm' = -1$, $m' = -8$			M1	
	For normal $y - \frac{1}{2}\sqrt{3} = -8(x - \sqrt{3})$		L	M1	
	At Q , $y = 0$ $-\frac{1}{2}\sqrt{3} = -8(x - \sqrt{3})$				
	leading to $x = \frac{17}{16}\sqrt{3}$	$(k = \frac{17}{16})$	1.0625	A1	(6