Trigonometry(Addition, Double Angle \& R Formulae) - Edexcel Past Exam Questions MARK SCHEME

Question 1: June 07 Q6

Question Number	Scheme	Marks
(a)	$\begin{array}{r} \cos 2 A=\cos ^{2} A-\sin ^{2} A \quad\left(+ \text { use of } \cos ^{2} A+\sin ^{2} A \equiv 1\right) \\ =\left(1-\sin ^{2} A\right) ;-\sin ^{2} A=1-2 \sin ^{2} A \tag{} \end{array}$	M1 A1 (2)
(b)	$\begin{array}{r} 2 \sin 2 \theta-3 \cos 2 \theta-3 \sin \theta+3 \equiv 4 \sin \theta \cos \theta ;-3\left(1-2 \sin ^{2} \theta\right)-3 \sin \theta+3 \\ \equiv 4 \sin \theta \cos \theta+6 \sin ^{2} \theta-3 \sin \theta \\ \equiv \sin \theta(4 \cos \theta+6 \sin \theta-3) \tag{*} \end{array}$	B1; M1 M1 A1 (4)
(c)	$4 \cos \theta+6 \sin \theta \equiv R \sin \theta \cos \alpha+R \cos \theta \sin \alpha$ Complete method for R (may be implied by correct answer) $\begin{aligned} & {\left[R^{2}=4^{2}+6^{2}, R \sin \alpha=4, R \cos \alpha=6\right]} \\ & R=\sqrt{52} \text { or } 7.21 \end{aligned}$ Complete method for $\alpha ; \quad \alpha=0.588$ (allow 33.7°)	M1 A1 M1 A1 (4)
(d)	$\begin{align*} & \sin \theta(4 \cos \theta+6 \sin \theta-3)=0 \\ & \theta=0 \\ & \sin (\theta+0.588)=\frac{3}{\sqrt{52}}=0.4160 . . \quad\left(24.6^{\circ}\right) \\ & \theta+0.588=(0.4291), 2.7125\left[\text { or } \theta+33.7^{\circ}=\left(24.6^{\circ}\right), 155.4^{\circ}\right] \\ & \theta=2.12 \quad \text { cao } \end{align*}$	M1 B1 M1 dM1 A1

Question 2: Jan 06 Q6

Question 3: Jan 06 Q7

Question Number	Scheme	Marks	
	(a) (i) Use of $\cos 2 x=\cos ^{2} x-\sin ^{2} x$ in an attempt to prove the identity. $\frac{\cos 2 x}{\cos x+\sin x}=\frac{\cos ^{2} x-\sin ^{2} x}{\cos x+\sin x}=\frac{(\cos x-\sin x)(\cos x+\sin x)}{\cos x+\sin x}=\cos x-\sin x * \quad \text { cso }$	M1	(2)
	(ii) Use of $\cos 2 x=2 \cos ^{2} x-1$ in an attempt to prove the identity.	M1	
	Use of $\sin 2 x=2 \sin x \cos x$ in an attempt to prove the identity.	M1	
	$\frac{1}{2}(\cos 2 x-\sin 2 x)=\frac{1}{2}\left(2 \cos ^{2} x-1-2 \sin x \cos x\right)=\cos ^{2} x-\cos x \sin x-\frac{1}{2} * \quad \text { cso }$	A1	(3)
	(b) $\begin{aligned} \cos \theta(\cos \theta-\sin \theta) & =\frac{1}{2} \\ \cos ^{2} \theta-\cos \theta \sin \theta-\frac{1}{2} & =0 \end{aligned} \quad \text { Using (a)(i) }$	M1	
	$\frac{1}{2}(\cos 2 \theta-\sin 2 \theta)=0 \quad \text { Using (a)(ii) }$	M1	
	$\cos 2 \theta=\sin 2 \theta$ *	A1	(3)
	(c) $\tan 2 \theta=1$	M1	
	$2 \theta=\frac{\pi}{4},\left(\frac{5 \pi}{4}, \frac{9 \pi}{4}, \frac{13 \pi}{4}\right)$ any one correct value of 2θ	A1	
	$\theta=\frac{\pi}{8}, \frac{5 \pi}{8}, \frac{9 \pi}{8}, \frac{13 \pi}{8} \quad$ Obtaining at least 2 solutions in range	M1	
	The 4 correct solutions	A1	(4)
	If decimals $(0.393,1.963,3.534,5.105)$ or degrees $\left(22.5^{\circ}, 112.5^{\circ}, 202.5^{\circ}, 292.5^{\circ}\right)$ are given, but all 4 solutions are found, penalise one A mark only. Ignore solutions out of range.		[12]

Question 4: June 06 Q8

Question Number	Scheme	Marks
(a)	Method for finding $\sin A$ $\sin A=-\frac{\sqrt{7}}{4}$ Note: First A1 for $\frac{\sqrt{7}}{4}$, exact. Second A1 for sign (even if dec. answer given) Use of $\sin 2 A \equiv 2 \sin A \cos A$ $\sin 2 A=-\frac{3 \sqrt{7}}{8}$ or equivalent exact Note: \pm f.t. Requires exact value, dependent on 2 nd M	M1 A1 Al M1 A1 $\sqrt{ }$
(b)(i)	$\begin{aligned} \cos \left(2 x+\frac{\pi}{3}\right)+\cos \left(2 x-\frac{\pi}{3}\right) & \equiv \cos 2 x \cos \frac{\pi}{3}-\sin 2 x \sin \frac{\pi}{3}+\cos 2 x \cos \frac{\pi}{3}+\sin 2 x \sin \frac{\pi}{3} \\ & \equiv 2 \cos 2 x \cos \frac{\pi}{3} \end{aligned}$ [This can be just written down (using factor formulae) for M1A1] $\begin{equation*} \equiv \cos 2 x \quad \text { AG } \tag{3} \end{equation*}$ Note: M1A1 earned, if $\equiv 2 \cos 2 x \cos \frac{\pi}{3}$ just written down, using factor theorem Final $\mathrm{A} 1^{*}$ requires some working after first result.	M1 A1 $\mathrm{A} 1^{*}$

Question 5: Jan 07 Q1

Question Number	Scheme	Marks
	(a) $\begin{aligned} \sin 3 \theta & =\sin (2 \theta+\theta)=\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta \\ & =2 \sin \theta \cos ^{2} \theta+\left(1-2 \sin ^{2} \theta\right) \sin \theta \\ & =2 \sin \theta-2 \sin ^{3} \theta+\sin \theta-2 \sin ^{3} \theta \\ & =3 \sin \theta-4 \sin ^{3} \theta \quad * \end{aligned}$ (b) $\sin 3 \theta=3 \times \frac{\sqrt{ } 3}{4}-4\left(\frac{\sqrt{ } 3}{4}\right)^{3}=\frac{3 \sqrt{ } 3}{4}-\frac{3 \sqrt{ } 3}{16}=\frac{9 \sqrt{ } 3}{16}$ or exact equivalent	B1 B1 B1 M1 A1 (5) M1 A1 (2)

Question 6: Jan 07 Q5

Question Number	Scheme	Marks
	(a) $\begin{aligned} R^{2}=(\sqrt{ } 3)^{2}+1^{2} & \Rightarrow R=2 \\ \tan \alpha=\sqrt{ } 3 & \Rightarrow \alpha=\frac{\pi}{3} \end{aligned} \quad \text { accept awrt } 1.05$ (b) $\begin{aligned} & \sin (x+\text { their } \alpha)=\frac{1}{2} \\ & x+\text { their } \alpha=\frac{\pi}{6}\left(\frac{5 \pi}{6}, \frac{13 \pi}{6}\right) \\ & x=\frac{\pi}{2}, \frac{11 \pi}{6} \end{aligned}$ accept awrt 1.57, 5.76 The use of degrees loses only one mark in this question. Penalise the first time it occurs in an answer and then ignore.	M1 A1 M1 A1 (4) M1 A1 M1 A1 (4)

Question 7: June 07 Q6

Question Number	Scheme	Marks
(a) (b) (c)	Complete method for R : e.g. $R \cos \alpha=3, R \sin \alpha=2, R=\sqrt{\left(3^{2}+2^{2}\right)}$ $R=\sqrt{13} \quad$ or 3.61 (or more accurate) Complete method for $\tan \alpha=\frac{2}{3}$ [Allow $\tan \alpha=\frac{3}{2}$] $\begin{equation*} \alpha=0.588 \tag{4} \end{equation*}$ (Allow 33.7°)	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{array}$
	Greatest value $=(\sqrt{13})^{4}=169$	M1, A1 (2)
		M1 A1 M1 M1 A1 (5) (11 marks)

Notes: (a) $1^{\text {st }} \mathrm{M} 1$ for correct method for R $2^{\text {nd }} \mathrm{M} 1$ for correct method for $\tan \alpha$
No working at all: M1A1 for $\sqrt{ } 13$, M1A1 for 0.588 or 33.7°.
N.B. R $\cos \alpha=2$, R $\sin \alpha=3$ used, can still score M1A1 for R, but loses the A mark for α. $\cos \alpha=3, \sin \alpha=2$: apply the same marking.
(b) M1 for realising $\sin (x+\alpha)= \pm 1$, so finding R^{4}.
(c) Working in mixed degrees/rads : first two marks available Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°]
Third M1 can be gained for candidate's 0.281 - candidate's $0.588+2 \pi$ or equiv. in degrees One of the answers correct in radians or degrees implies the corresponding M mark.

Alt: (c)
(i) Squaring to form quadratic in $\sin x$ or $\cos x$
$\left[13 \cos ^{2} x-4 \cos x-8=0, \quad 13 \sin ^{2} x-6 \sin x-3=0\right]$
Correct values for $\cos x=0.953 \ldots,-0.646$; or $\sin x=0.767,2.27$ awrt
For any one value of $\cos x$ or $\sin x$, correct method for two values of $x \quad$ M1
$x=2.273$ or $x=5.976$ (awrt) Both seen anywhere A1
Checking other values $(0.307,4.011$ or $0.869,3.449)$ and discarding
(ii) Squaring and forming equation of form $a \cos 2 x+b \sin 2 x=c$
$9 \sin ^{2} x+4 \cos ^{2} x+12 \sin 2 x=1 \Rightarrow 12 \sin 2 x+5 \cos 2 x=11$
Setting up to solve using R formula e.g. $\sqrt{ } 13 \cos (2 x-1.176)=11$

$$
\begin{array}{ll}
(2 x-1.176)=\cos ^{-1}\left(\frac{11}{\sqrt{13}}\right)=0.562(0 \ldots & \quad(\alpha) \\
(2 x-1.176)=2 \pi-\alpha, 2 \pi+\alpha, \ldots \ldots \ldots & \text { A1 } \\
\text { M1 }
\end{array}
$$

$x=2.273$ or $x=5.976$ (awrt) Both seen anywhere A1
Checking other values and discarding
M1

Question 8: June 07 Q7

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline (a)

Alt. (a) \& \begin{tabular}{l}
$$
\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}
$$

M1 Use of common denominator to obtain single fraction
$$
=\frac{1}{\cos \theta \sin \theta}
$$

M1 Use of appropriate trig identity (in this case $\sin ^{2} \theta+\cos ^{2} \theta=1$)
$$
\begin{aligned}
& =\frac{1}{\frac{1}{2} \sin 2 \theta} \\
& =2 \operatorname{cosec} 2 \theta
\end{aligned}
$$

Use of $\sin 2 \theta=2 \sin \theta \cos \theta$
$$
\begin{align*}
\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\tan \theta+\frac{1}{\tan \theta} & =\frac{\tan ^{2} \theta+1}{\tan \theta} \\
& =\frac{\sec ^{2} \theta}{\tan \theta} \\
& =\frac{1}{\cos \theta \sin \theta}=\frac{1}{\frac{1}{2} \sin 2 \theta} \tag{M1}\\
& =2 \operatorname{cosec} 2 \theta \quad \text { (*) } \quad \text { (cso) } \tag{A1}
\end{align*}
$$

If show two expressions are equal, need conclusion such as QED , tick, true.

 \&

M1

M1

M1

A1 cso

(4)
\end{tabular}

\hline (b) \& | | | | Shape
 (May be translated but
 need to see 4"sections") |
| :--- | :--- | :--- | :--- |
| 2 | | | | \& | B1 |
| :--- |
| B1 dep. |
| (2) |

\hline (c)

Note \& \begin{tabular}{l}
$2 \operatorname{cosec} 2 \theta=3$

$\sin 2 \theta=\frac{2}{3} \quad$ Allow $\frac{2}{\sin 2 \theta}=3 \quad$ [M1 for equation in $\sin 2 \theta$]

$(2 \theta)=\left[41.810 \ldots{ }^{\circ}, 138.189 \ldots{ }^{\circ} ; \quad 401.810 \ldots{ }^{\circ}, 498.189 \ldots{ }^{\circ}\right]$

1st M1 for $\alpha, 180-\alpha ; 2^{\text {yd }}$ M1 adding 360° to at least one of values
$$
\theta=20.9^{\circ}, 69.1^{\circ}, 200.9^{\circ}, 249.1^{\circ} \text { (1 d.p.) }
$$

awrt

$1^{\text {st }} \mathrm{A} 1$ for any two correct, $2^{\text {nd }} \mathrm{A} 1$ for other two

Extra solutions in range lose final A1 only

SC: Final 4 marks: $\theta=20.9^{\circ}$, after M0M0 is B1; record as M0M0A1A0

 \&

M1, A1

M1; M1

A1,A1
\end{tabular}

\hline Alt.(c) \& $\tan \theta+\frac{1}{\tan \theta}=3$ and form quadratic, $\tan ^{2} \theta-3 \tan \theta+1=0 \quad$ M1, A1 (M1 for attempt to multiply through by $\tan \theta$, A1 for correct equation above) Solving quadratic $\quad\left[\tan \theta=\frac{3 \pm \sqrt{5}}{2}=2.618 \ldots\right.$ or $\left.=0.3819 \ldots\right] \quad$ M1 $\theta=69.1^{\circ}, 249.1^{\circ} \quad \theta=20.9^{\circ}, 200.9^{\circ} \quad$ (1 d.p.) M1, A1, A1
11 is for one use of $180^{\circ}+\alpha^{\circ}$. A1A1 as for main scheme) \& (12 marks)

\hline
\end{tabular}

Question 9: Jan 08 Q6

Question 10: June 08 Q2

Question Number	Scheme		Marks
(a)	$R^{2}=5^{2}+12^{2}$		M1
	$R=13$		A1
	$\tan \alpha=\frac{12}{5}$		M1
	$\alpha \approx 1.176$		A1 cao (4)
(b)	$\cos (x-\alpha)=\frac{6}{13}$		M1
	$x-\alpha=\arccos \frac{6}{13}=1.091 \ldots$		A1
	$x=1.091 \ldots+1.176 \ldots \approx 2.267 \ldots$	awrt 2.3	A1
	$x-\alpha=-1.091 \ldots$	accept $\ldots=5.19 \ldots$ for M	M1
	$x=-1.091 \ldots+1.176 \ldots \approx 0.0849 \ldots$	awrt 0.084 or 0.085	A1 (5)
(c)(i)	$R_{\max }=13 \quad \mathrm{ft}$ their R		B1 ft
(ii)	At the maximum, $\cos (x-\alpha)=1$ or $x-\alpha=0$		M1
	$x=\alpha=1.176 \ldots$	awrt $1.2, \mathrm{ft}$ their α	A1ft (3)
			(12 marks)

Question 11: Jan 09 Q6

Question 12: June 09 Q6

Question Number			Marks
(d)	$3 \sin 2 x+4 \cos 2 x=2$		M1
	$5 \cos (2 x-36.87)=2$		
	$\cos (2 x-36.87)=\frac{2}{5}$	$\cos (2 x \pm$ their $\alpha)=\frac{2}{\text { their } R}$	
	$(2 x-36.87)=66.42182 \ldots$.	awrt 66	A1
	$(2 x-36.87)=360-66.42182 \ldots$		
	Hence, $x=51.64591 \ldots$, 165.22409 \ldots.	One of either awrt 51.6 or awrt 51.7 or awrt 165.2 or awrt 165.3	A1
		Both awrt 51.6 AND awrt 165.2	(4)
		If there are any EXTRA solutions inside the range $0 \leq x<180^{\circ}$ then withhold the final accuracy mark. Also ignore EXTRA solutions outside the range $0 \leq x<180^{\circ}$.	
			[12]

Question 13: Jan 10 Q3

Part (b): If there are any EXTRA solutions inside the range $0 \leq x<2 \pi$, then withhold the final accuracy mark if the candidate would otherwise score all 5 marks. Also ignore EXTRA solutions outside the range $0 \leq x<2 \pi$.

Question 14: Jan 10 Q8

If there are any EXTRA solutions inside the range $0 \leq x \leq 180^{\circ}$ and the candidate would otherwise score FULL MARKS then withhold the final accuracy mark (the sixth mark in this question). Also ignore EXTRA solutions outside the range $0 \leq x \leq 180^{\circ}$.

Question 15: June 10 Q1

Question Number	Scheme	Marks
(a) (b)	$\begin{aligned} & \frac{2 \sin \theta \cos \theta}{1+2 \cos ^{2} \theta-1} \\ & \frac{\not 2 \sin \theta \cos \theta}{\not 2 \cos \theta \cos \theta}=\tan \theta \text { (as required) AG } \\ & 2 \tan \theta=1 \Rightarrow \tan \theta=\frac{1}{2} \\ & \theta_{1}=\text { awrt } 26.6^{\circ} \\ & \theta_{2}=\text { awrt }-153.4^{\circ} \end{aligned}$	M1 A1 cso (2) M1 A1 A1 $\sqrt{ }$
	(a) M1: Uses both a correct identity for $\sin 2 \theta$ and a correct identity for $\cos 2 \theta$. Also allow a candidate writing $1+\cos 2 \theta=2 \cos ^{2} \theta$ on the denominator. Also note that angles must be consistent in when candidates apply these identities. A1: Correct proof. No errors seen. (b) $1^{\text {tt }}$ M1 for either $2 \tan \theta=1$ or $\tan \theta=\frac{1}{2}$, seen or implied. A1: awrt 26.6 $\mathrm{A} 1 \sqrt{ }:$ awrt -153.4° or $\theta_{2}=-180^{\circ}+\theta_{1}$ Special Case: For candidate solving, $\tan \theta=k$, where $k \neq \frac{1}{2}$, to give θ_{1} and $\theta_{2}=-180^{\circ}+\theta_{1}$, then award M0A0B1 in part (b). Special Case: Note that those candidates who writes $\tan \theta=1$, and gives ONLY two answers of 45° and -135° that are inside the range will be awarded SC M0A0B1.	

Question 16: Jan 11 Q1

Question Number	Scheme	Marks
(a)	$7 \cos x-24 \sin x=R \cos (x+\alpha)$ $7 \cos x-24 \sin x=R \cos x \cos \alpha-R \sin x \sin \alpha$ Equate $\cos x$: $\quad 7=R \cos \alpha$ Equate $\sin x: \quad 24=R \sin \alpha$ $\begin{array}{lr} R=\sqrt{7^{2}+24^{2}} ;=25 & R=25 \\ \tan \alpha=\frac{24}{7} \Rightarrow \alpha=1.287002218 \ldots & \tan \alpha=\frac{24}{7} \text { or } \tan \alpha=\frac{7}{4} \\ & \text { awrt } 1.287 \end{array}$ Hence, $7 \cos x-24 \sin x=25 \cos (x+1.287)$	B1 M1 A1 (3)
(b)	Minimum value $=\underline{-25} \quad-25$ or $-R$	B1ft (1)
(c)	$7 \cos x-24 \sin x=10$ $25 \cos (x+1.287)=10$ $\cos (x+1.287)=\frac{10}{25}$ $\cos (x \pm \text { their } \alpha)=\frac{10}{(\text { their } R)}$ $\mathrm{PV}=1.159279481 \ldots$ or $66.42182152 \ldots$. For applying $\cos ^{-1}\left(\frac{10}{\text { their } R}\right)$ So, $x+1.287=\left\{1.159279 \ldots{ }^{c}, 5.123906 \ldots{ }^{c}, 7.442465 \ldots{ }^{c}\right\}$ either $2 \pi+$ or - their PV^{c} or $360^{\circ}+$ or - their PV° gives, $x=\{3.836906 \ldots, 6.155465 \ldots\}$ awrt 3.84 OR 6.16 awrt 3.84 AND 6.16	M1 M1 M1 A1 A1 (5) [9]

Question 17: Jan 11 Q3

Question Number	Scheme		Marks
	$2 \cos 2 \theta=1-2 \sin \theta$		
	$2\left(1-2 \sin ^{2} \theta\right)=1-2 \sin \theta$ $2-4 \sin ^{2} \theta=1-2 \sin \theta$	Substitutes either $1-2 \sin ^{2} \theta$ or $2 \cos ^{2} \theta-1$ or $\cos ^{2} \theta-\sin ^{2} \theta$ for $\cos 2 \theta$.	M1
	$4 \sin ^{2} \theta-2 \sin \theta-1=0$	Forms a "quadratic in sine" $=0$	M1(*)
	$\sin \theta=\frac{2 \pm \sqrt{4-4(4)(-1)}}{8}$	Applies the quadratic formula See notes for alternative methods.	M1
	PVs: $\alpha_{1}=54^{\circ}$ or $\alpha_{2}=-18^{*}$		
	$\theta=\{54,126,198,342\}$	Any one correct answer 180-their pv	A1 dM1(*) A1
			[6]

Question 18: June 11 Q6

(b)(ii)

$\tan 2 x=1$	M 1
$2 x=45^{\circ}$	A 1
$2 x=45^{\circ}+180^{\circ}$	$\mathrm{M1}$
$x=22.5^{\circ}, 112.5^{\circ}, 202.5^{\circ}, 292.5^{\circ}$	$\mathrm{A1}$ (any two)
A1	

Alt for (b)(i)

$$
\begin{aligned}
& \tan 15^{\circ}=\tan \left(60^{\circ}-45^{\circ}\right) \text { or } \tan \left(45^{\circ}-30^{\circ}\right) \\
& \tan 15^{\circ}=\frac{\tan 60-\tan 45}{1+\tan 60 \tan 45} \text { or } \frac{\tan 45-\tan 30}{1+\tan 45 \tan 30}
\end{aligned}
$$

$$
\tan 15^{\circ}=\frac{\sqrt{3}-1}{1+\sqrt{3}} \text { or } \quad \frac{1-\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}
$$

> Rationalises to produce

$$
\tan 15^{\circ}=2-\sqrt{3}
$$

Question 19: June 11 Q8

Question Number	Scheme	Marks
(a)	$R^{2}=2^{2}+3^{2}$ $R=\sqrt{13}$ or $3.61 \ldots$.	M1
	$\tan \alpha=\frac{3}{2}$	A 1
	$\alpha=0.983 \ldots$	M 1
		A 1

