Constant Acceleration : Travel Graphs - Edexcel Past Exam Questions

1.

A sprinter runs a race of 200 m . Her total time for running the race is 25 s . Figure 2 is a sketch of the speed-time graph for the motion of the sprinter. She starts from rest and accelerates uniformly to a speed of $9 \mathrm{~m} \mathrm{~s}^{-1}$ in 4 s . The speed of $9 \mathrm{~m} \mathrm{~s}^{-1}$ is maintained for 16 s and she then decelerates uniformly to a speed of $u \mathrm{~m} \mathrm{~s}^{-1}$ at the end of the race. Calculate
(a) the distance covered by the sprinter in the first 20 s of the race,
(b) the value of u,
(c) the deceleration of the sprinter in the last 5 s of the race.
2. A train is travelling at $10 \mathrm{~m} \mathrm{~s}^{-1}$ on a straight horizontal track. The driver sees a red signal 135 m ahead and immediately applies the brakes. The train immediately decelerates with constant deceleration for 12 s , reducing its speed to $3 \mathrm{~m} \mathrm{~s}^{-1}$. The driver then releases the brakes and allows the train to travel at a constant speed of $3 \mathrm{~m} \mathrm{~s}^{-1}$ for a further 15 s . He then applies the brakes again and the train slows down with constant deceleration, coming to rest as it reaches the signal.
(a) Sketch a speed-time graph to show the motion of the train.
(b) Find the distance travelled by the train from the moment when the brakes are first applied to the moment when its speed first reaches $3 \mathrm{~m} \mathrm{~s}^{-1}$.
(c) Find the total time from the moment when the brakes are first applied to the moment when the train comes to rest.
3.

Figure 1 shows the speed-time graph of a cyclist moving on a straight road over a 7 s period. The sections of the graph from $t=0$ to $t=3$, and from $t=3$ to $t=7$, are straight lines. The section from $t=$ 3 to $t=7$ is parallel to the t-axis.

State what can be deduced about the motion of the cyclist from the fact that
(a) the graph from $t=0$ to $t=3$ is a straight line,
(b) the graph from $t=3$ to $t=7$ is parallel to the t-axis.
(c) Find the distance travelled by the cyclist during this 7 s period.

June 06 Q1
4. A car is moving along a straight horizontal road. At time $t=0$, the car passes a point A with speed $25 \mathrm{~m} \mathrm{~s}^{-1}$. The car moves with constant speed $25 \mathrm{~m} \mathrm{~s}^{-1}$ until $t=10 \mathrm{~s}$. The car then decelerates uniformly for 8 s . At time $t=18 \mathrm{~s}$, the speed of the car is $V \mathrm{~m} \mathrm{~s}^{-1}$ and this speed is maintained until the car reaches the point B at time $t=30 \mathrm{~s}$.
(a) Sketch a speed-time graph to show the motion of the car from A to B.

Given that $A B=526 \mathrm{~m}$, find
(b) the value of V,
(c) the deceleration of the car between $t=10 \mathrm{~s}$ and $t=18 \mathrm{~s}$.
5. A car moves along a horizontal straight road, passing two points A and B. At A the speed of the car is $15 \mathrm{~m} \mathrm{~s}^{-1}$. When the driver passes A, he sees a warning sign W ahead of him, 120 m away. He immediately applies the brakes and the car decelerates with uniform deceleration, reaching W with speed $5 \mathrm{~m} \mathrm{~s}^{-1}$. At W, the driver sees that the road is clear. He then immediately accelerates the car with uniform acceleration for 16 s to reach a speed of $V \mathrm{~m} \mathrm{~s}^{-1}$ ($V>15$). He then maintains the car at a constant speed of $V \mathrm{~m} \mathrm{~s}^{-1}$. Moving at this constant speed, the car passes B after a further 22 s .
(a) Sketch, in the space below, a speed-time graph to illustrate the motion of the car as it moves from A to B.
(b) Find the time taken for the car to move from A to B.

The distance from A to B is 1 km .
(c) Find the value of V.

Jan 08 Q3
6. A car is moving along a straight horizontal road. The speed of the car as it passes the point A is $25 \mathrm{~m} \mathrm{~s}^{-1}$ and the car maintains this speed for 30 s . The car then decelerates uniformly to a speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$. The speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$ is then maintained until the car passes the point B. The time taken to travel from A to B is 90 s and $A B=1410 \mathrm{~m}$.
(a) Sketch a speed-time graph to show the motion of the car from A to B.
(2)
(b) Calculate the deceleration of the car as it decelerates from $25 \mathrm{~m} \mathrm{~s}^{-1}$ to $10 \mathrm{~m} \mathrm{~s}^{-1}$.

June 08 Q4
7. A small ball is projected vertically upwards from ground level with speed $u \mathrm{~m} \mathrm{~s}^{-1}$. The ball takes 4 s to return to ground level.
(a) Draw, in the space below, a velocity-time graph to represent the motion of the ball during the first 4 s .
(b) The maximum height of the ball above the ground during the first 4 s is 19.6 m . Find the value of u.
8. An athlete runs along a straight road. She starts from rest and moves with constant acceleration for 5 seconds, reaching a speed of $8 \mathrm{~m} \mathrm{~s}^{-1}$. This speed is then maintained for T seconds. She then decelerates at a constant rate until she stops. She has run a total of 500 m in 75 s .
(a) Sketch a speed-time graph to illustrate the motion of the athlete.
(b) Calculate the value of T.
9. Two cars P and Q are moving in the same direction along the same straight horizontal road. Car P is moving with constant speed $25 \mathrm{~m} \mathrm{~s}^{-1}$. At time $t=0, P$ overtakes Q which is moving with constant speed $20 \mathrm{~m} \mathrm{~s}^{-1}$. From $t=T$ seconds, P decelerates uniformly, coming to rest at a point X which is 800 m from the point where P overtook Q. From $t=25 \mathrm{~s}, Q$ decelerates uniformly, coming to rest at the same point X at the same instant as P.
(a) Sketch, on the same axes, the speed-time graphs of the two cars for the period from $t=0$ to the time when they both come to rest at the point X.
(b) Find the value of T.

June 10 Q5
10. A car accelerates uniformly from rest for 20 seconds. It moves at constant speed $v \mathrm{~m} \mathrm{~s}^{-1}$ for the next 40 seconds and then decelerates uniformly for 10 seconds until it comes to rest.
(a) For the motion of the car, sketch
a speed-time graph,
Given that the total distance moved by the car is 880 m ,
(b) find the value of v.

