Name:

Pure

Mathematics 1

Advanced Subsidiary

Practice Paper J8

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE AS Level Specifications
- There are 12 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

The point $A(-6,4)$ and the point $B(8,-3)$ lie on the line L.
(a) Find an equation for L in the form $a x+b y+c=0$, where a, b and c are integers.
(b) Find the distance $A B$, giving your answer in the form $k \sqrt{ } 5$, where k is an integer.

Question 2

A circle C has centre $M(6,4)$ and radius 3 .
(a) Write down the equation of the circle in the form

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}=r^{2} \tag{2}
\end{equation*}
$$

Figure 3

Figure 3 shows the circle C. The point T lies on the circle and the tangent at T passes through the point P $(12,6)$. The line MP cuts the circle at Q.
(b) Show that the angle $T M Q$ is 61.8835 degrees to 4 decimal places.

The shaded region $T P Q$ is bounded by the straight lines $T P, Q P$ and the arc $T Q$, as shown in Figure 3.
Given that the area of sector MTQ is 4.8446
(c) Find the area of the shaded region $T P Q$. Give your answer to 3 decimal places.

Question 3

Figure 4

Figure 4 shows an open-topped water tank, in the shape of a cuboid, which is made of sheet metal. The base of the tank is a rectangle x metres by y metres. The height of the tank is x metres.

The capacity of the tank is $100 \mathrm{~m}^{3}$.
(a) Show that the area $A \mathrm{~m}^{2}$ of the sheet metal used to make the tank is given by

$$
A=\frac{300}{x}+2 x^{2} .
$$

(b) Use calculus to find the value of x for which A is stationary.
(c) Prove that this value of x gives a minimum value of A.
(d) Calculate the minimum area of sheet metal needed to make the tank.

Question 4

The curve C has equation

$$
y=(x+3)(x-1)^{2}
$$

(a) Sketch C showing clearly the coordinates of the points where the curve meets the coordinate axes.
(b) Show that the equation of C can be written in the form

$$
y=x^{3}+x^{2}-5 x+k
$$

where k is a positive integer, and state the value of k.
There are two points on C where the gradient of the tangent to C is equal to 3 .
(c) Find the x-coordinates of these two points.

Question 5

Given that a and b are positive constants, solve the simultaneous equations

$$
\begin{gathered}
a=3 b \\
\log _{3} a+\log _{3} b=2 .
\end{gathered}
$$

Give your answers as exact numbers.

Question 6

Figure 1
Figure 1 shows a sketch of the curve with equation $y=f(x)$. The curve crosses the x-axis at the points $(1,0)$ and $(4,0)$. The maximum point on the curve is $(2,5)$.

In separate diagrams sketch the curves with the following equations.

On each diagram show clearly the coordinates of the maximum point and of each point at which the curve crosses the x-axis.
(a) $y=2 f(x)$,
(b) $y=\mathrm{f}(-x)$.

The maximum point on the curve with equation $y=\mathrm{f}(x+a)$ is on the y-axis.
(c) Write down the value of the constant a.

Question 7

Figure 2

In Figure 2 the curve C has equation $y=6 x-x^{2}$ and the line L has equation $y=2 x$.
(a) Show that the curve C intersects the x-axis at $x=0$ and $x=6$.
(b) Show that the line L intersects the curve C at the points $(0,0)$ and $(4,8)$.

The region R, bounded by the curve C and the line L, is shown shaded in Figure 2.
(c) Use calculus to find the area of R.

Question 8

(a) Show that the equation

$$
3 \sin ^{2} \theta-2 \cos ^{2} \theta=1
$$

can be written as

$$
5 \sin ^{2} \theta=3 .
$$

(b) Hence solve, for $0^{\circ} \leq \theta<360^{\circ}$, the equation

$$
3 \sin ^{2} \theta-2 \cos ^{2} \theta=1,
$$

giving your answers to 1 decimal place.

Question 9

Figure 1

Figure 1 shows 3 yachts A, B and C which are assumed to be in the same horizontal plane. Yacht B is 500 m due north of yacht A and yacht C is 700 m from A . The bearing of C from A is 015°.
(a) Calculate the distance between yacht B and yacht C, in metres to 3 significant figures.

The bearing of yacht C from yacht B is θ°, as shown in Figure 1.
(b) Calculate the value of θ.

Question 10

The radioactive decay of a substance is given by

$$
R=1000 \mathrm{e}^{-c t}, \quad t \geq 0 .
$$

where R is the number of atoms at time t years and c is a positive constant.
(a) Find the number of atoms when the substance started to decay.

It takes 5730 years for half of the substance to decay.
(b) Find the value of c to 3 significant figures.
(c) Calculate the number of atoms that will be left when $t=22920$.
(d) Sketch the graph of R against t.

Question 11

Prove, from first principles, that the derivate of $3 x^{3}$ is $9 x^{2}$

Question 12

The graph represents the growth of a population of bacteria, P over t hours. The graph is modelled by the equation $P=a b^{t}$, where a and b are constants to be found.

The graph passes through the points $(0,2.3)$ and $(12,4.55)$
(a) Write down the equation of the line
(b) Using your answer to part (a) or otherwise, find the values of a and b giving your answers to 3 significant figures.
(c) Interpret the meaning of the constant a in this model
(d) Use your model to predict the population of bacteria to the nearest thousands after 20 hours. Comment on the validity of your answer.

